搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有预裂纹的固体氧化物燃料电池的电极裂纹扩展分析

谢佳苗 李京阳 周佳逸 郝文乾

引用本文:
Citation:

含有预裂纹的固体氧化物燃料电池的电极裂纹扩展分析

谢佳苗, 李京阳, 周佳逸, 郝文乾

Analysis of electrode crack propagation in solid oxide fuel cell with pre-crack

Xie JiaMiao, Li JingYang, Zhou JiaYi, Hao WenQian
PDF
导出引用
  • 为了降低固体氧化物燃料电池在冷却过程中的裂纹扩展程度,提高电池的稳定性和耐久性,对含有预裂纹的固体氧化物燃料电池的三维模型进行有限元分析。从工作温度、材料属性、预裂纹角度、预裂纹位置等方面出发,以电池应力分布、裂纹扩展后的长度、最大宽度和偏转角度等作为判据,探究各因素对预裂纹扩展行为的影响,提出基于材料优化和结构优化的提高电池稳定性的方案。研究结果表明,在所选参数范围内,为了抑制裂纹扩展程度,电池的工作温度不应低于1023 K,阳极的热膨胀系数应小于12.50×10-6 K-1。此外,当预裂纹倾斜角度为45°时或预裂纹距阳极底部0.45 mm时,裂纹扩展后的最大宽度最小,且扩展方向最易预测,此时电池受裂纹影响的范围最小、稳定性最高。该研究工作为抑制固体氧化物燃料电池的裂纹扩展、提高燃料电池的使用寿命、促进燃料电池的商业化进程提供了依据。
    The mechanical performance of solid oxide fuel cell is one of the main factors limiting its commercialization process. In order to reduce the degree of crack propagation during the cooling process and improve the stability and durability of the cell, the finite element analysis is conducted on a three-dimensional model of solid oxide fuel cell containing pre-cracks. Utilizing the extended finite element method (XFEM) and fracture theory, considering the stress distribution, length and maximum width after crack propagation and deflection angle of crack as criteria, this paper investigates the influence of various parameters, including working temperature, material properties, pre-crack angle and pre-crack location, on pre-crack propagation behavior and proposes a solution to improve the stability of the cell based on material optimization and structural optimization. Set a pre-crack at the left boundary of the anode to analyze the influence of different operating conditions on the propagation of anode cracks in the cell. The correctness of finite element simulation is verified by comparing the simulation results and theoretical results of crack stress intensity factors in the same model. From the comprehensive analysis of the thermal stress of the cell, the crack length and maximum width after pre-crack propagation, and the two deflection angles of crack propagation, it can be seen that within the selected parameters, in order to ensure the stability of the cell and inhibit the degree of crack propagation, the operating temperature of the cell should not be lower than 1023 K, and the coefficient of thermal expansion of anode should be less than 12.50×10-6 K-1. In addition, when the pre-crack angle is 45° or the pre-crack is 0.45mm away from the bottom of anode, the maximum width after crack propagation is the smallest, and the propagation path is the most predictable. In this case, the cell is affected by the smallest crack range and the highest stability. This research provides a guidance for suppressing crack propagation in solid oxide fuel cell, improving the lifetime and promoting the commercialization process of fuel cell.
  • [1]

    Minh N Q, Takahashi T 1995Science and technology of ceramic fuel cells. (Amsterdam: Elsevier Science) p147

    [2]

    Singhal S C, Kendall K 2002Materials Today 5 55

    [3]

    Shen S L, Zhang X K, Wan X W, Zheng K Q, Ling Y H, Wang S R 2022Acta Phys. Sin. 71 164401(in Chinese) [申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣2022 71 164401]

    [4]

    Xu H, Zhang L, Dang Z 2020Acta Phys. Sin. 69 098801(in Chinese) [徐晗, 张璐, 党政2020 69 098801]

    [5]

    Li K, Li X, Li J, Xie J M 2019J. Inorg. Mater. 34 611(in Chinese) [李凯, 李霄, 李箭, 谢佳苗2019无机材料学报34 611]

    [6]

    Su Y, Zhu D Y, Zhang T T, Zhang Y R, Han W P, Zhang J, Seeram R, Long Y Z 2022Chinese Phys. B 31 057305

    [7]

    Shao Q, Fernández-González R, Ruiz-Morales J, Bouhala L, Fiorelli D, Younes A, Núñez P, Belouettar S, Makradi A 2015Int. J. Hydrogen Energy 40 16509

    [8]

    Shao Q, Bouhala L, Fiorelli D, Fahs M, Younes A, Núñez P, Belouettar S, Makradi A 2016Int. J. Solids Struct. 78-79 189

    [9]

    Joulaee N, Makradi A, Ahzi S, Khaleel M A, Koeppel B K 2009Int. J. Mech. Mater. Des. 5 217

    [10]

    Nguyen B N, Koeppel B J, Ahzi S, Khaleel M A, Singh P 2006J. Am. Ceram. Soc. 89 1358

    [11]

    Li Q Q, Xue D X, Feng C Y, Zhang X W, Li G J 2022J. Electrochem. Soc. 169 073507

    [12]

    Bouhala L, Belouettar S, Makradi A, Rémond Y2010 Materials & Design 31 1033

    [13]

    Pitakthapanaphong S, Busso E P 2005Model Simul. Mater. Sc. 13 531

    [14]

    Kim S J, Choi M B, Park M, Kim H, Son J W, Lee J H, Kim B K, Lee H, Kim S G, Yoon K 2017J. Power Sources 360 284

    [15]

    Li L X, Wang T J 2005Adv. Mech.35 5(in Chinese)[李录贤, 王铁军2005力学进展35 5]

    [16]

    Wang Z Q, Chen S H 2009Advanced fracture mechanics (Beijing: Science and Technology Press) p87(in Chinese) [王自强, 陈少华2009高等断裂力学(北京: 科学技术出版社)第87页]

    [17]

    Ergodan F, Sih G C 1963J. Basic Sci. Eng. 85 520

    [18]

    Chang K J 1981Eng. Fract. Mech. 14 107

    [19]

    Hussain M A, Pu S L, Underwood J H 1974Strain energy release rate for a crack under combined Mode I and Mode II (West Conshohocken: ASTM International) p35

    [20]

    Mori M, Yamamoto T, Itoh H, Inaba H, Tagawa H 1998J. Electrochem. Soc. 145: 1374

    [21]

    Sameshima S, Ichikawa T, Kawaminami M, Hirata Y 1999 Mater. Chem. Phys. 61: 31

    [22]

    Nakajo A, Mueller F, Brouwer J, Favrat D 2012 Int. J. Hydrogen Energy 37 9249

    [23]

    Nakajo A, Mueller F, Brouwer J, Favrat D 2012 Int. J. Hydrogen Energy 37 9269

    [24]

    Petruzzi L, Cocchi S, Fineschi F 2003 J. Power Sources 118 96

    [25]

    Nakajo A, Kuebler J, Faes A. Vogt U F, Schindler H J, Chiang L K, Modena S, Herle J V, Hocker T 2012Ceram. Int. 38 3907

    [26]

    Chatterjee A, Sharma G, Varshney J, Neogy S, Singh R N 2017 Mat. Sci. Eng. A-Struct. 684 626

    [27]

    Nakajo A, Stiller C, Harkegard G, Bolland O 2006J. Power Sources 158 287

    [28]

    Tada H, Paris P C, Irwin G R 1973The stress analysis of cracks handbook (New York: ASME Press) p30

    [29]

    Zhu C Y 2010Master Dissertation (Zhengzhou: Henan Polytechnic University) (in Chinese)[朱传锐2010硕士学位论文(郑州: 河南理工大学)]

    [30]

    Chen H 2022Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)[陈浩2022博士学位论文(兰州: 兰州大学)]

    [31]

    Junya K, Hirohisa S, Katsuhiro K, Toshio N 2004J. Alloy. Compd. 365 253

    [32]

    Pihlatie M, Kaiser A, Mogensen M 2009J. Eur. Ceram. Soc. 29 1657

    [33]

    Biswas S, Nithyanantham T, Saraswathi N, Bandopadhyay S 2009J. Mater. Sci. 44 778

    [34]

    Chen T, Yao C, Hu L, Huang C, Li X 2019Thin Wall. Struct143 143106196

    [35]

    El-Emam M H, Salim A H, Sallam M E H 2016J. Struct. Eng. 143 04016229

  • [1] 申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣. 固体氧化物燃料电池温升模拟中入口异常高温度梯度研究.  , doi: 10.7498/aps.71.20220031
    [2] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响.  , doi: 10.7498/aps.71.20212203
    [3] 黄坤, 王腾飞, 姚激. 单层MoS2的热弹耦合非线性板模型.  , doi: 10.7498/aps.70.20210160
    [4] 徐晗, 张璐. 空间电荷层效应对固体氧化物燃料电池三相界面附近氧空位传输的影响.  , doi: 10.7498/aps.70.20210012
    [5] 梁晋洁, 高宁, 李玉红. 体心立方Fe中${ \langle 100 \rangle}$位错环对微裂纹扩展影响的分子动力学研究.  , doi: 10.7498/aps.69.20200317
    [6] 徐晗, 张璐, 党政. 固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理.  , doi: 10.7498/aps.69.20191697
    [7] 陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬. Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算.  , doi: 10.7498/aps.67.20172748
    [8] 蒋勇, 袁晓东, 王海军, 廖威, 刘春明, 向霞, 邱荣, 周强, 高翔, 杨永佳, 郑万国, 祖小涛, 苗心向. 退火对熔石英表面损伤修复点损伤增长的影响.  , doi: 10.7498/aps.65.044209
    [9] 陆勇俊, 杨溢, 王峰会, 楼康, 赵翔. 连续梯度的功能层对燃料电池在初始还原过程中曲率及残余应力的影响.  , doi: 10.7498/aps.65.098102
    [10] 郭刘洋, 陈铮, 龙建, 杨涛. 晶体相场法研究应力状态及晶体取向对微裂纹尖端扩展行为的影响.  , doi: 10.7498/aps.64.178102
    [11] 刘华艳, 范悦, 康振锋, 许彦彬, 薄青瑞, 丁铁柱. (Ce0.8Sm0.2O2-/Y2O3:ZrO2)N超晶格电解质薄膜的制备及表征.  , doi: 10.7498/aps.64.236801
    [12] 董刚, 刘荡, 石涛, 杨银堂. 多个硅通孔引起的热应力对迁移率和阻止区的影响.  , doi: 10.7498/aps.64.176601
    [13] 魏智, 金光勇, 彭博, 张喜和, 谭勇. 毫秒脉冲激光辐照硅基PIN的温度场应力场数值分析.  , doi: 10.7498/aps.63.194205
    [14] 徐军, 肖晓春, 潘一山, 丁鑫. 基于J积分的颗粒煤岩单轴压缩下裂纹扩展研究.  , doi: 10.7498/aps.63.214602
    [15] 杨宏道, 李晓红, 李国强, 袁春华, 唐多昌, 徐琴, 邱荣, 王俊波. 1064 nm纳秒脉冲激光诱导硅表面微结构研究.  , doi: 10.7498/aps.60.027901
    [16] 邵宇飞, 王绍青. 基于准连续介质方法模拟纳米多晶体Ni中裂纹的扩展.  , doi: 10.7498/aps.59.7258
    [17] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力.  , doi: 10.7498/aps.58.4812
    [18] 陈为兰, 顾培夫, 王 颖, 章岳光, 刘 旭. 红外薄膜中热应力的研究.  , doi: 10.7498/aps.57.4316
    [19] 邢修三. 微裂纹演化的随机模型.  , doi: 10.7498/aps.30.1615
    [20] 用电阻法确定裂纹扩展的开裂点.  , doi: 10.7498/aps.25.344
计量
  • 文章访问数:  155
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-29

/

返回文章
返回
Baidu
map