Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influences of space charge layer effect on oxygen vacancy transport adjacent to three phase boundaries within solid oxide fuel cells

Xu Han Zhang Lu

Citation:

Influences of space charge layer effect on oxygen vacancy transport adjacent to three phase boundaries within solid oxide fuel cells

Xu Han, Zhang Lu
PDF
HTML
Get Citation
  • The nanocomposite electrode is a promising technology to improve the electrochemical performance of intermediate/low temperature solid oxide fuel cells (SOFCs). Within the nanocomposite electrode, the space charge layer (SCL) effect is likely to alternate the oxygen vacancy transport adjacent to the three phase boundaries (TPBs), which is one of the key factors to improve the electrochemical performance of the electrodes. Existing studies usually adopt Poisson-Boltzmann (PB) equation to predict the SCL effect, in which all the charge carriers are assumed to be in the electrochemical equilibrium state and the net current of the conductor is nearly zero. Apparently, the PB equation is incapable of predicting the SCL effects under typical SOFC operating conditions, since the net current is obviously not zero. In this paper, based on the patterned electrode, we develop a numerical method via coupling the Poisson equation with the mass conservation equation of charge carriers for the oxygen vacancy transport with considering the SCL effect under SOFC operating conditions. Our results show that an obvious gradient is observed in the oxygen vacancy concentration near the TPBs due to the SCL effect, which leads to a remarkable diffusion current that is even larger than the migration current driven by the potential gradient. The SCL resistance is computed to quantitatively characterize the influence of the SCL effect on the oxygen vacancy transport. The SCL resistance shows a decreasing tendency with the increasing of the dimensionless Debye length and dimensionless potential, but it increases with the increasing of the dimensionless average current density. These results and the numerical method can be helpful in improving the performance of intermediate/low temperature SOFCs via rationally designing robust nanocomposite electrodes.
      Corresponding author: Xu Han, xuhanxh@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51606151) and the China Postdoctoral Science Foundation (Grant No. 2020M673392)
    [1]

    Wachsman E D, Lee K T 2011 Science 334 935Google Scholar

    [2]

    Gao Z, Mogni L V, Miller E C, Railsback J G, Barnett S A 2016 Energy Environ. Sci. 9 1602Google Scholar

    [3]

    Tong X, Mebane D S, De Souza R A 2020 J. Am. Ceram. Soc. 103 5Google Scholar

    [4]

    Zhao C, Li Y, Zhang W, Zheng Y, Lou X, Yu B, Chen J, Chen Y, Liu M, Wang J 2020 Energy Environ. Sci. 13 53Google Scholar

    [5]

    Lynch M E, Yang L, Qin W, Choi J, Liu M, Blinn K, Liu M 2011 Energy Environ. Sci. 4 2249Google Scholar

    [6]

    Zheng Y, Zhao C H, Li Y F, Zhang W Q, Wu T, Wang Z C, Li Z P, Chen J, Wang J C, Yu B, Zhang J J 2020 Nano Energy 78 105236Google Scholar

    [7]

    Uthayakumar A, Pandiyan A, Mathiyalagan S, Keshri A K, Moorthy S B K 2020 J. Phys. Chem. C 124 5591Google Scholar

    [8]

    Uthayakumar A, Pandiyan A, Krishna Moorthy S B 2018 Int. J. Hydrogen Energy 43 23488Google Scholar

    [9]

    Shirpour M, Merkle R, Lin C T, Maier J 2012 Phys. Chem. Chem. Phys. 14 730Google Scholar

    [10]

    Iguchi F, Chen C, Yugami H, Kim S 2011 J. Mater. Chem. 21 16517Google Scholar

    [11]

    Preethi S, Babu K S 2019 J. Alloys Compd. 792 1068Google Scholar

    [12]

    Kim S 2016 Phys. Chem. Chem. Phys. 18 19787Google Scholar

    [13]

    Kim S, Kim S K, Khodorov S, Maier J, Lubomirsky I 2016 Phys. Chem. Chem. Phys. 18 3023Google Scholar

    [14]

    Guan L L, Le S R, He S F, Zhu X D, Liu T, Sun K N 2015 Electrochim. Acta 161 129Google Scholar

    [15]

    Kim S K, Khodorov S, Chen C, Kim S, Lubomirsky I 2013 Phys. Chem. Chem. Phys. 15 8716Google Scholar

    [16]

    Kim S, Jain P, Avila-Paredes H J, Thron A, Benthem K V, SEN S 2010 J. Mater. Chem. 20 3855Google Scholar

    [17]

    Mebane D S, De Souza R A 2015 Energy Environ. Sci. 8 2935Google Scholar

    [18]

    Wang M, Kang Q 2010 J. Comput. Phys. 229 728Google Scholar

    [19]

    徐晗, 张璐 2021 70 068801

    Xu H, Zhang L 2021 Acta Phys. Sin. 70 068801

    [20]

    Gregori G, Merkle R, Maier J 2017 Prog. Mater Sci. 89 252Google Scholar

    [21]

    Xu H, Chen Y, Kim J H, Dang Z, Liu M L 2019 Int. J. Hydrogen Energy 44 30293Google Scholar

    [22]

    徐晗, 张璐, 党政 2020 69 098801Google Scholar

    Xu H, Zhang L, Dang Z 2020 Acta Phys. Sin. 69 098801Google Scholar

    [23]

    Xu H, Dang Z 2017 Int. J. Heat Mass Transfer 109 1252Google Scholar

    [24]

    Dang Z, Xu H 2016 Energy 107 295Google Scholar

    [25]

    Guo Z Z, Zheng C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [26]

    Connor P A, Yue X, Savaniu C D, Price R, Triantafyllou G, Cassidy M, Kerherve G, Payne D J, Maher R C, Cohen L F, Tomov R I, Glowacki B A, Kumar R V, Irvine J T S 2018 Adv. Energy Mater. 8 1800120Google Scholar

    [27]

    Chen Y, Chen Y, Ding D, Ding Y, Choi Y M, Zhang L, Yoo S, Chen D, deGlee B, Xu H, Lu Q, Zhao B, Vardar G, Wang J, Bluhme H, Crumline E J, Yang C, Liu J, Yildiz B, Liu M 2017 Energy Environ. Sci. 10 964Google Scholar

    [28]

    Zhang Y, Liu J, Singh M, Hu E, Jiang Z, Raza R, Wang F, Wang J, Yang F, Zhu B 2020 Nano-Micro Lett. 12 178Google Scholar

    [29]

    Zhu B 2009 Int. J. Energy Res. 33 1126Google Scholar

    [30]

    Zhu B, Li S, Mellander B E 2008 Electrochem. Commun. 10 302Google Scholar

    [31]

    郭向欣, 李泓 2011 物理 40 648

    Guo X, Li H 2011 Physics 40 648

    [32]

    Crumlin E J, Mutoro E, Ahn S, La O G J, Leonard D N, Borisevich A, Biegalski M D, Christen H M, Shao-Horn Y 2010 J. Phys. Chem. Lett. 1 3149Google Scholar

    [33]

    工藤徹一, 笛木和雄 (董治长 译) 1992 固态离子学 (北京: 北京工业大学出版社) 第35页

    Kudo T, Fueki K (translated by Dong Z C) 1992 Solid Ionics (Beijing: Beijing University of Technology Press) p35 (in Chinese)

  • 图 1  (a) SOFC模式电极几何结构示意图; (b), (c), (d)本文计算区域, 包括TPB附近的SCL与体相(Bulk)区域

    Figure 1.  (a) Schematic of a patterned SOFC electrode; (b), (c), (d) computational domain considered in the present study, including the SCL and bulk area adjacent to the TPB.

    图 2  二维电阻网络图

    Figure 2.  Two-dimensional resistance network.

    图 3  本文LB模型验证: 右边界(x/l0 = 1)与上边界(y/l0 = 1)电势分布

    Figure 3.  Validation of the present LB model: Potential distributions at the right (x/l0 = 1) and top (y/l0 = 1) boundary.

    图 4  基准工况下TPB附近氧空位传输特性, 其中, 电势(a)与氧空位浓度(b)分布; 迁移(c)与扩散(d)电流密度大小及流线分布; 右边界(x/l0 = 1)电势、电势梯度与氧空位浓度(e), 以及电流密度与电荷密度分布(f)

    Figure 4.  Oxygen vacancy transport adjacent to the TPB under standard case: Potential (a) and oxygen vacancy concentration (b) distribution; migration (c) and diffusion (d) current density streamline; distributions of potential, potential gradient, oxygen vacancy concentration (e), current density and charge density (f) at x/l0 = 1.

    图 5  不同无量纲平均电流密度(iav/i0)下SCL效应的影响, 其中, 不同iav/i0下SCL电阻与TPB中心点氧空位浓度(a)、以及SCL厚度(b)分布; 当iav/i0分别为–1.6, –1, 1, 1.6, 以及x/l0 = 1时的界面电势(c)、氧空穴浓度(d)、迁移(e)与扩散(f)电流密度分布

    Figure 5.  Influences of SCL effect under different dimensionless average current densities (iav/i0): The SCL resistance, oxygen vacancy concentration at central TPB (a), and SCL thickness (b) under different iav/i0; distributions of potential (c), oxygen vacancy concentration (d), migration (e) and diffusion (f) current density when iav/i0 = –1.6, –1, 1 and 1.6 at x/l0 = 1.

    图 6  不同无量纲Debye长度(λD/l0)下SCL效应的影响, 其中, 不同λD/l0下SCL电阻与TPB中心点氧空位浓度(a)、以及SCL厚度(b)分布; 当λD/l0分别为0.005, 0.01, 0.05, 以及x/l0 = 1时的界面电势(c)、氧空穴浓度(d)、迁移(e)与扩散(f)电流密度分布

    Figure 6.  Influences of SCL effect under different dimensionless Debye length (λD/l0): The SCL resistance, oxygen vacancy concentration at central TPB (a), and SCL thickness (b) under different λD/l0; distributions of potential (c), oxygen vacancy concentration (d), migration (e) and diffusion (f) current density when λD/l0 = 0.005, 0.01 and 0.05 at x/l0 = 1.

    图 7  不同无量纲电势(zV0/(RT ))下SCL效应的影响, 其中, 不同zV0/(RT )下SCL电阻与TPB中心点氧空位浓度(a)、以及SCL厚度(b)分布; 当zV0/(RT )分别为0.001, 0.01, 0.1, 以及x/l0 = 1时的界面电势(c)、氧空穴浓度(d)、迁移(e)与扩散(f)电流密度分布

    Figure 7.  Influences of SCL effect under different dimensionless potential (zV0/(RT )): The SCL resistance, oxygen vacancy concentration at central TPB (a), and SCL thickness (b) under different zV0/(RT ); distributions of potential (c), oxygen vacancy concentration (d), migration (e) and diffusion (f) current density when zV0/(RT ) = 0.001, 0.01 and 0.1 at x/l0 = 1.

    表 1  本文的边界条件

    Table 1.  Boundary conditions of the present study.

    坐标边界条件
    $ y^* = 0 $$ \phi^* = 0, ~c_{\rm V}^* = 1 $
    $ y^* = 1 $ (非TPBs)${ {\partial \phi {^*} } / {\partial y^* } }= { {\partial c_{ {\rm V} }^*} / {\partial y^*} } = 0$
    $ y^* = 1 $ (TPBs)ϕ* = 1, $ {i}_{\mathrm{a}\mathrm{V}}^{*} $ = –0.4 (基准工况)
    $ x^* = 0 $与$ x^* = 1 $${ {\partial \phi {^*} } / {\partial x^* } }= { {\partial {c_{\rm{V} } }{^*} } / {\partial x^*} } = 0$
    DownLoad: CSV
    Baidu
  • [1]

    Wachsman E D, Lee K T 2011 Science 334 935Google Scholar

    [2]

    Gao Z, Mogni L V, Miller E C, Railsback J G, Barnett S A 2016 Energy Environ. Sci. 9 1602Google Scholar

    [3]

    Tong X, Mebane D S, De Souza R A 2020 J. Am. Ceram. Soc. 103 5Google Scholar

    [4]

    Zhao C, Li Y, Zhang W, Zheng Y, Lou X, Yu B, Chen J, Chen Y, Liu M, Wang J 2020 Energy Environ. Sci. 13 53Google Scholar

    [5]

    Lynch M E, Yang L, Qin W, Choi J, Liu M, Blinn K, Liu M 2011 Energy Environ. Sci. 4 2249Google Scholar

    [6]

    Zheng Y, Zhao C H, Li Y F, Zhang W Q, Wu T, Wang Z C, Li Z P, Chen J, Wang J C, Yu B, Zhang J J 2020 Nano Energy 78 105236Google Scholar

    [7]

    Uthayakumar A, Pandiyan A, Mathiyalagan S, Keshri A K, Moorthy S B K 2020 J. Phys. Chem. C 124 5591Google Scholar

    [8]

    Uthayakumar A, Pandiyan A, Krishna Moorthy S B 2018 Int. J. Hydrogen Energy 43 23488Google Scholar

    [9]

    Shirpour M, Merkle R, Lin C T, Maier J 2012 Phys. Chem. Chem. Phys. 14 730Google Scholar

    [10]

    Iguchi F, Chen C, Yugami H, Kim S 2011 J. Mater. Chem. 21 16517Google Scholar

    [11]

    Preethi S, Babu K S 2019 J. Alloys Compd. 792 1068Google Scholar

    [12]

    Kim S 2016 Phys. Chem. Chem. Phys. 18 19787Google Scholar

    [13]

    Kim S, Kim S K, Khodorov S, Maier J, Lubomirsky I 2016 Phys. Chem. Chem. Phys. 18 3023Google Scholar

    [14]

    Guan L L, Le S R, He S F, Zhu X D, Liu T, Sun K N 2015 Electrochim. Acta 161 129Google Scholar

    [15]

    Kim S K, Khodorov S, Chen C, Kim S, Lubomirsky I 2013 Phys. Chem. Chem. Phys. 15 8716Google Scholar

    [16]

    Kim S, Jain P, Avila-Paredes H J, Thron A, Benthem K V, SEN S 2010 J. Mater. Chem. 20 3855Google Scholar

    [17]

    Mebane D S, De Souza R A 2015 Energy Environ. Sci. 8 2935Google Scholar

    [18]

    Wang M, Kang Q 2010 J. Comput. Phys. 229 728Google Scholar

    [19]

    徐晗, 张璐 2021 70 068801

    Xu H, Zhang L 2021 Acta Phys. Sin. 70 068801

    [20]

    Gregori G, Merkle R, Maier J 2017 Prog. Mater Sci. 89 252Google Scholar

    [21]

    Xu H, Chen Y, Kim J H, Dang Z, Liu M L 2019 Int. J. Hydrogen Energy 44 30293Google Scholar

    [22]

    徐晗, 张璐, 党政 2020 69 098801Google Scholar

    Xu H, Zhang L, Dang Z 2020 Acta Phys. Sin. 69 098801Google Scholar

    [23]

    Xu H, Dang Z 2017 Int. J. Heat Mass Transfer 109 1252Google Scholar

    [24]

    Dang Z, Xu H 2016 Energy 107 295Google Scholar

    [25]

    Guo Z Z, Zheng C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [26]

    Connor P A, Yue X, Savaniu C D, Price R, Triantafyllou G, Cassidy M, Kerherve G, Payne D J, Maher R C, Cohen L F, Tomov R I, Glowacki B A, Kumar R V, Irvine J T S 2018 Adv. Energy Mater. 8 1800120Google Scholar

    [27]

    Chen Y, Chen Y, Ding D, Ding Y, Choi Y M, Zhang L, Yoo S, Chen D, deGlee B, Xu H, Lu Q, Zhao B, Vardar G, Wang J, Bluhme H, Crumline E J, Yang C, Liu J, Yildiz B, Liu M 2017 Energy Environ. Sci. 10 964Google Scholar

    [28]

    Zhang Y, Liu J, Singh M, Hu E, Jiang Z, Raza R, Wang F, Wang J, Yang F, Zhu B 2020 Nano-Micro Lett. 12 178Google Scholar

    [29]

    Zhu B 2009 Int. J. Energy Res. 33 1126Google Scholar

    [30]

    Zhu B, Li S, Mellander B E 2008 Electrochem. Commun. 10 302Google Scholar

    [31]

    郭向欣, 李泓 2011 物理 40 648

    Guo X, Li H 2011 Physics 40 648

    [32]

    Crumlin E J, Mutoro E, Ahn S, La O G J, Leonard D N, Borisevich A, Biegalski M D, Christen H M, Shao-Horn Y 2010 J. Phys. Chem. Lett. 1 3149Google Scholar

    [33]

    工藤徹一, 笛木和雄 (董治长 译) 1992 固态离子学 (北京: 北京工业大学出版社) 第35页

    Kudo T, Fueki K (translated by Dong Z C) 1992 Solid Ionics (Beijing: Beijing University of Technology Press) p35 (in Chinese)

  • [1] Wang He-Yu, Li Zhong-Lei, Du Bo-Xue. Effect of interfacial electronic structure on conductivity and space charge characteristics of core-shell quantum dots/polyethylene nanocomposite insulation. Acta Physica Sinica, 2024, 73(12): 127702. doi: 10.7498/aps.73.20232041
    [2] Xie JiaMiao, Li JingYang, Zhou JiaYi, Hao WenQian. Analysis of electrode crack propagation in solid oxide fuel cell with pre-crack. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.73.20241176
    [3] Shi Xiao-Hong, Hou Bin-Peng, Li Zhi-Shuo, Chen Jing-Jin, Shi Xiao-Wen, Zhu Zi-Zhong. Formation of oxygen vacancy clusters in Li-rich Mn-based cathode Materials of lithium-ion batteries: First-principles calculations. Acta Physica Sinica, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [4] Shen Shuang-Lin, Zhang Xiao-Kun, Wan Xing-Wen, Zheng Ke-Qing, Ling Yi-Han, Wang Shao-Rong. Study on extremely high temperature gradient at entrance of solid oxide fuel cell by preheating model. Acta Physica Sinica, 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [5] Xu Han, Zhang Lu. Charge carrier transport in oxygen-ion conducting electrolytes with considering space charge layer effect. Acta Physica Sinica, 2021, 70(6): 068801. doi: 10.7498/aps.70.20201651
    [6] Xu Han, Zhang Lu, Dang Zheng. Coupling mechanism of mass transport and electrochemical reaction within patterned anode of solid oxide fuel cell. Acta Physica Sinica, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [7] Chen Mei-Na, Zhang Lei, Gao Hui-Ying, Xuan Yan, Ren Jun-Feng, Lin Zi-Jing. DFT+U calculation of Sm3+ and Sr2+ co-doping effect on performance of CeO2-based electrolyte. Acta Physica Sinica, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [8] Li Li-Li, Zhang Xiao-Hong, Wang Yu-Long, Guo Jia-Hui. Simulations of the effects of electric field and temperature on space charge traps in polymer. Acta Physica Sinica, 2017, 66(8): 087201. doi: 10.7498/aps.66.087201
    [9] Yuan Duan-Lei, Min Dao-Min, Huang Yin, Xie Dong-Ri, Wang Hai-Yan, Yang Fang, Zhu Zhi-Hao, Fei Xiang, Li Sheng-Tao. Influence of filler content on trap and space charge properties of epoxy resin nanocomposites. Acta Physica Sinica, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [10] Li Ping, Xu Yu-Tang. Monte Carlo simulation of time-dependent dielectric breakdown of oxide caused by migration of oxygen vacancies. Acta Physica Sinica, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [11] Lu Yong-Jun, Yang Yi, Wang Feng-Hui, Lou Kang, Zhao Xiang. Effect of continuously graded functional layer on curvature and residual stress of solid oxide fuel cell in initial reduction process. Acta Physica Sinica, 2016, 65(9): 098102. doi: 10.7498/aps.65.098102
    [12] Cao Shan, Liu Jiang-Ping, Li Jun, Wang Kai, Lin Wei, Lei Hai-Le. Infrared absorption characteristics of solid nitrogen at near-triple point temperatures. Acta Physica Sinica, 2015, 64(7): 073301. doi: 10.7498/aps.64.073301
    [13] Liu Hua-Yan, Fan Yue, Kang Zhen-Feng, Xu Yan-Bin, Bo Qing-Rui, Ding Tie-Zhu. Preparation and characterization of the superlattice (Sm-doped ceria/yttria-stabilized zirconia)N electrolyte film. Acta Physica Sinica, 2015, 64(23): 236801. doi: 10.7498/aps.64.236801
    [14] Jiang Yi-Min, Liu Mario. Hydrodynamic theory of grains, water and air. Acta Physica Sinica, 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [15] Liu Jiang-Ping, Bi Peng, Lei Hai-Le, Li Jun, Wei Jian-Jun. Infrared absorption spectrum of solid deuterium at near-triple point temperature. Acta Physica Sinica, 2013, 62(16): 163301. doi: 10.7498/aps.62.163301
    [16] Shi Da-Wei, Wu Mei-Ling, Yang Chang-Ping, Ren Chun-Ling, Xiao Hai-Bo, Wang Kai-Ying. AC properties of Pr0.7Ca0.3MnO3 ceramics. Acta Physica Sinica, 2013, 62(2): 026201. doi: 10.7498/aps.62.026201
    [17] Luo Yang, Duan Yu, Chen Ping, Zang Chun-Liang, Xie Yue, Zhao Yi, Liu Shi-Yong. Preliminary investigation on the method of determining electron mobility of tris (8-hydroxyquinolinato) aluminum by space charge limited current. Acta Physica Sinica, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [18] Liao Rui-Jin, Zhou Tian-Chun, George Chen, Yang Li-Jun. A space charge trapping model and its parameters in polymeric material. Acta Physica Sinica, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [19] Yang Chang-Ping, Chen Shun-Sheng, Dai Qi, Song Xue-Ping. The origin of EPIR effect in Nd0.7Sr0.3MnO3 ceramics. Acta Physica Sinica, 2011, 60(11): 117202. doi: 10.7498/aps.60.117202
    [20] Zheng Fei-Hu, Zhang Ye-Wen, Wu Chang-Shun, Li Ji-Xiao, Xia Zhong-Fu. Piezo-PWP and PEA methods for measuring space charge in solid dielectric. Acta Physica Sinica, 2003, 52(5): 1137-1142. doi: 10.7498/aps.52.1137
Metrics
  • Abstract views:  6449
  • PDF Downloads:  101
  • Cited By: 0
Publishing process
  • Received Date:  04 January 2021
  • Accepted Date:  21 January 2021
  • Available Online:  16 June 2021
  • Published Online:  20 June 2021

/

返回文章
返回
Baidu
map