-
The mechanical performance of solid oxide fuel cell is one of the main factors limiting its commercialization process. In order to reduce the degree of crack propagation during the cooling process and improve the stability and durability of the cell, the finite element analysis is conducted on a three-dimensional model of solid oxide fuel cell containing pre-cracks. Utilizing the extended finite element method (XFEM) and fracture theory, considering the stress distribution, length and maximum width after crack propagation and deflection angle of crack as criteria, this paper investigates the influence of various parameters, including working temperature, material properties, pre-crack angle and pre-crack location, on pre-crack propagation behavior and proposes a solution to improve the stability of the cell based on material optimization and structural optimization. Set a pre-crack at the left boundary of the anode to analyze the influence of different operating conditions on the propagation of anode cracks in the cell. The correctness of finite element simulation is verified by comparing the simulation results and theoretical results of crack stress intensity factors in the same model. From the comprehensive analysis of the thermal stress of the cell, the crack length and maximum width after pre-crack propagation, and the two deflection angles of crack propagation, it can be seen that within the selected parameters, in order to ensure the stability of the cell and inhibit the degree of crack propagation, the operating temperature of the cell should not be lower than 1023 K, and the coefficient of thermal expansion of anode should be less than 12.50×10-6 K-1. In addition, when the pre-crack angle is 45° or the pre-crack is 0.45mm away from the bottom of anode, the maximum width after crack propagation is the smallest, and the propagation path is the most predictable. In this case, the cell is affected by the smallest crack range and the highest stability. This research provides a guidance for suppressing crack propagation in solid oxide fuel cell, improving the lifetime and promoting the commercialization process of fuel cell.
-
Keywords:
- Solid Oxide Fuel Cell /
- Pre-crack /
- Crack propagation /
- Thermal stress
-
[1] Minh N Q, Takahashi T 1995Science and technology of ceramic fuel cells. (Amsterdam: Elsevier Science) p147
[2] Singhal S C, Kendall K 2002Materials Today 5 55
[3] Shen S L, Zhang X K, Wan X W, Zheng K Q, Ling Y H, Wang S R 2022Acta Phys. Sin. 71 164401(in Chinese) [申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣2022 71 164401]
[4] Xu H, Zhang L, Dang Z 2020Acta Phys. Sin. 69 098801(in Chinese) [徐晗, 张璐, 党政2020 69 098801]
[5] Li K, Li X, Li J, Xie J M 2019J. Inorg. Mater. 34 611(in Chinese) [李凯, 李霄, 李箭, 谢佳苗2019无机材料学报34 611]
[6] Su Y, Zhu D Y, Zhang T T, Zhang Y R, Han W P, Zhang J, Seeram R, Long Y Z 2022Chinese Phys. B 31 057305
[7] Shao Q, Fernández-González R, Ruiz-Morales J, Bouhala L, Fiorelli D, Younes A, Núñez P, Belouettar S, Makradi A 2015Int. J. Hydrogen Energy 40 16509
[8] Shao Q, Bouhala L, Fiorelli D, Fahs M, Younes A, Núñez P, Belouettar S, Makradi A 2016Int. J. Solids Struct. 78-79 189
[9] Joulaee N, Makradi A, Ahzi S, Khaleel M A, Koeppel B K 2009Int. J. Mech. Mater. Des. 5 217
[10] Nguyen B N, Koeppel B J, Ahzi S, Khaleel M A, Singh P 2006J. Am. Ceram. Soc. 89 1358
[11] Li Q Q, Xue D X, Feng C Y, Zhang X W, Li G J 2022J. Electrochem. Soc. 169 073507
[12] Bouhala L, Belouettar S, Makradi A, Rémond Y2010 Materials & Design 31 1033
[13] Pitakthapanaphong S, Busso E P 2005Model Simul. Mater. Sc. 13 531
[14] Kim S J, Choi M B, Park M, Kim H, Son J W, Lee J H, Kim B K, Lee H, Kim S G, Yoon K 2017J. Power Sources 360 284
[15] Li L X, Wang T J 2005Adv. Mech.35 5(in Chinese)[李录贤, 王铁军2005力学进展35 5]
[16] Wang Z Q, Chen S H 2009Advanced fracture mechanics (Beijing: Science and Technology Press) p87(in Chinese) [王自强, 陈少华2009高等断裂力学(北京: 科学技术出版社)第87页]
[17] Ergodan F, Sih G C 1963J. Basic Sci. Eng. 85 520
[18] Chang K J 1981Eng. Fract. Mech. 14 107
[19] Hussain M A, Pu S L, Underwood J H 1974Strain energy release rate for a crack under combined Mode I and Mode II (West Conshohocken: ASTM International) p35
[20] Mori M, Yamamoto T, Itoh H, Inaba H, Tagawa H 1998J. Electrochem. Soc. 145: 1374
[21] Sameshima S, Ichikawa T, Kawaminami M, Hirata Y 1999 Mater. Chem. Phys. 61: 31
[22] Nakajo A, Mueller F, Brouwer J, Favrat D 2012 Int. J. Hydrogen Energy 37 9249
[23] Nakajo A, Mueller F, Brouwer J, Favrat D 2012 Int. J. Hydrogen Energy 37 9269
[24] Petruzzi L, Cocchi S, Fineschi F 2003 J. Power Sources 118 96
[25] Nakajo A, Kuebler J, Faes A. Vogt U F, Schindler H J, Chiang L K, Modena S, Herle J V, Hocker T 2012Ceram. Int. 38 3907
[26] Chatterjee A, Sharma G, Varshney J, Neogy S, Singh R N 2017 Mat. Sci. Eng. A-Struct. 684 626
[27] Nakajo A, Stiller C, Harkegard G, Bolland O 2006J. Power Sources 158 287
[28] Tada H, Paris P C, Irwin G R 1973The stress analysis of cracks handbook (New York: ASME Press) p30
[29] Zhu C Y 2010Master Dissertation (Zhengzhou: Henan Polytechnic University) (in Chinese)[朱传锐2010硕士学位论文(郑州: 河南理工大学)]
[30] Chen H 2022Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)[陈浩2022博士学位论文(兰州: 兰州大学)]
[31] Junya K, Hirohisa S, Katsuhiro K, Toshio N 2004J. Alloy. Compd. 365 253
[32] Pihlatie M, Kaiser A, Mogensen M 2009J. Eur. Ceram. Soc. 29 1657
[33] Biswas S, Nithyanantham T, Saraswathi N, Bandopadhyay S 2009J. Mater. Sci. 44 778
[34] Chen T, Yao C, Hu L, Huang C, Li X 2019Thin Wall. Struct143 143106196
[35] El-Emam M H, Salim A H, Sallam M E H 2016J. Struct. Eng. 143 04016229
Metrics
- Abstract views: 156
- PDF Downloads: 6
- Cited By: 0