Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Unsteady oscillation distribution model of liquid jet in supersonic crossflows

Wu Li-Yin Wang Zhen-Guo Li Qing-Lian Li Chun

Citation:

Unsteady oscillation distribution model of liquid jet in supersonic crossflows

Wu Li-Yin, Wang Zhen-Guo, Li Qing-Lian, Li Chun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Unsteady distribution of spray is experimentally studied when a round liquid jet is injected into a supersonic crossflow vertically. An oscillation distribution model for the liquid column and spray is established. Tyndall scattering caused by the sol medium is put forward to eliminate the interference effect of monochromatic laser passing through the supersonic gas flow field. The scattering causes the disordering of laser propagation direction and phase, thus makes the planar light source uniform and eliminate the interference effect of laser at the same time. Then a uniform light source is formed and can be set as the uniform background with a pulse width of 7 ns. The camera, with dimension of CCD pixel space of 40002672 pixel, is located directly in front of planar light source, and the shooting area is between both. The frozen liquid jet/spray images with high spatiotemporal resolution are captured using the pulsed laser background imaging (PLBI) method in supersonic crossflows. And the drag phenomenon caused by the too-long exposure time in the ordinary and traditional high-speed imaging process is avoided. Based on the maximizing inter-class variance method (Otsu) and Canny method, the out boundary of liquid jet/spray are extracted from an instantaneous image. A dimensionless parameter named intermittency factor (the logogram is r) is defined and used to quantitatively analyze the oscillation distribution characteristics of jet/spray. The intermittency factor of the whole spray field could be calculated by sample probability statistic method. An empirical jet/spray oscillation distribution model, in supersonic crossflows, is summarized based on parameter studies. Various conditions are studied, including stagnation pressure range of gas (642 kPa to 1010 kPa), practical pressure range (0.36 MPa to 4.61 MPa), nozzle diameters (0.48 mm/1.0 mm/1.25 mm/1.52 mm), distances down from nozzle (10 mm to 125 mm), and jet-gas momentum flux ratio range (0.11 to 7.49). The empirical model is used to predict the oscillation distribution of water jet penetrated in a Ma2.1 supersonic crossflow. It is indicated that the predictive result matches well with the experimental result. It could be concluded that the PLBI method presented in this paper reasonably utilizes the high energy and short pulse characteristics of the laser to successfully complete the frozen image of liquid jet/spray under the condition of supersonic crossflow. The dimensionless parameter r defined in the study can be used to quantitatively analyze the oscillation distribution characteristics of jet/spray well. This study has important significance for understanding the diffusion characteristics of liquid jet in supersonic crossflows.
      Corresponding author: Wang Zhen-Guo, 273501654@qq.com
    • Funds: Project was supported by the National Natural Science Foundation of China (Grant No. 11472303), and the Program for New Century Excellent Talents in University, China (Grant No. NCET-13-0156).
    [1]

    Wu L Y, Wang Z G, Li Q L, Zhang J Q 2015 Appl. Phys. Lett. 107 104103

    [2]

    Xia T J, Dong Y Q, Cao Y G 2013 Acta Phys. Sin. 62 214702 (in Chinese) [夏同军, 董永强, 曹义刚 2013 62 214702]

    [3]

    Jia G, Xiong J, Dong J Q, Xie Z Y, Wu J 2012 Chin. Phys. B 21 396

    [4]

    Wang L F, Ye W H, Li Y J, Meng L M 2008 Chin. Phys. B 17 3792

    [5]

    Wang Z G, Wu L Y, Li Q L, Li C 2014 Appl. Phys. Lett. 105 134102

    [6]

    Ghenai C, Sapmaz H, Lin C X 2009 Exp. Fluids 46 121

    [7]

    Kolpin M A, Horn K P, Reichenbach R E 1968 AIAA J. 6 853

    [8]

    Almeida H, Sousa J M M, Costa M 2014 Atomization and Sprays 24 81

    [9]

    Sun M B, Zhang S P, Zhao Y H, Zhao Y X, Liang J H 2013 Sci. China: Technol. Sci. 56 1989

    [10]

    Yoon H J, Hong J G, Lee C W 2011 Atomization and Sprays 21 673

    [11]

    Mashayek A, Behzad M, Ashgriz N 2011 AIAA J. 49 2407

    [12]

    Im K S, Lin K C, Lai M C, Chon M S 2011 Int. J. Autom. Technol. 12 489

    [13]

    Becker J, Hassa C 2002 Atomization and Sprays 12 49

    [14]

    Lin K C, Kennedy P J 2002 40th AIAA Aerospace Sciences Meeting Exhibit Reno, Nevada, January 14-17, 2002 p873

    [15]

    Lin K C, Kennedy P J, Kennedy P J, Jackson T A 2004 42th AIAA Aerospace Sciences Meeting Exhibit Reno, Nevada, January 5-8, 2004 p971

    [16]

    Dixon D R. Gruber M R, Jackson T A, Lin K C 2005 43th AIAA Aerospace Sciences Meeting Exhibit Reno, Nevada, January 10-13, 2005 p733

    [17]

    Perurena J B, Asma C O, Theunissen R, Chazot O 2009 Exp. Fluids 46 403

    [18]

    Tong Y H 2012 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [仝毅恒 2012 硕士学位论文 (长沙: 国防科学技术大学)]

    [19]

    Yang H, Li F, Sun B G 2012 Chin. J. Aeronaut. 25 42

    [20]

    Li C, Li Q L, Wu L Y 2014 17th Annual Conference on Liquid Atomization and Spray Systems-Asia Shanghai, China, October 28-31, 2014 p1

    [21]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Sci. China: Technol. Sci. 40 695 (in Chinese) [赵玉新, 易仕和, 田立丰, 何霖, 程忠宇 2010 中国科学: 科学技术 40 695]

    [22]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 184702]

    [23]

    Wu L Y, Wang Z G, Li Q L, Li C 2014 zl201410800056.5

    [24]

    Otsu N 1979 IEEE Trans. Syst. Man Cybernet. 9 62

    [25]

    Humble R A, Peltier S J, Bowersox R D W 2012 Phys. Fluids 24 106103

  • [1]

    Wu L Y, Wang Z G, Li Q L, Zhang J Q 2015 Appl. Phys. Lett. 107 104103

    [2]

    Xia T J, Dong Y Q, Cao Y G 2013 Acta Phys. Sin. 62 214702 (in Chinese) [夏同军, 董永强, 曹义刚 2013 62 214702]

    [3]

    Jia G, Xiong J, Dong J Q, Xie Z Y, Wu J 2012 Chin. Phys. B 21 396

    [4]

    Wang L F, Ye W H, Li Y J, Meng L M 2008 Chin. Phys. B 17 3792

    [5]

    Wang Z G, Wu L Y, Li Q L, Li C 2014 Appl. Phys. Lett. 105 134102

    [6]

    Ghenai C, Sapmaz H, Lin C X 2009 Exp. Fluids 46 121

    [7]

    Kolpin M A, Horn K P, Reichenbach R E 1968 AIAA J. 6 853

    [8]

    Almeida H, Sousa J M M, Costa M 2014 Atomization and Sprays 24 81

    [9]

    Sun M B, Zhang S P, Zhao Y H, Zhao Y X, Liang J H 2013 Sci. China: Technol. Sci. 56 1989

    [10]

    Yoon H J, Hong J G, Lee C W 2011 Atomization and Sprays 21 673

    [11]

    Mashayek A, Behzad M, Ashgriz N 2011 AIAA J. 49 2407

    [12]

    Im K S, Lin K C, Lai M C, Chon M S 2011 Int. J. Autom. Technol. 12 489

    [13]

    Becker J, Hassa C 2002 Atomization and Sprays 12 49

    [14]

    Lin K C, Kennedy P J 2002 40th AIAA Aerospace Sciences Meeting Exhibit Reno, Nevada, January 14-17, 2002 p873

    [15]

    Lin K C, Kennedy P J, Kennedy P J, Jackson T A 2004 42th AIAA Aerospace Sciences Meeting Exhibit Reno, Nevada, January 5-8, 2004 p971

    [16]

    Dixon D R. Gruber M R, Jackson T A, Lin K C 2005 43th AIAA Aerospace Sciences Meeting Exhibit Reno, Nevada, January 10-13, 2005 p733

    [17]

    Perurena J B, Asma C O, Theunissen R, Chazot O 2009 Exp. Fluids 46 403

    [18]

    Tong Y H 2012 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [仝毅恒 2012 硕士学位论文 (长沙: 国防科学技术大学)]

    [19]

    Yang H, Li F, Sun B G 2012 Chin. J. Aeronaut. 25 42

    [20]

    Li C, Li Q L, Wu L Y 2014 17th Annual Conference on Liquid Atomization and Spray Systems-Asia Shanghai, China, October 28-31, 2014 p1

    [21]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Sci. China: Technol. Sci. 40 695 (in Chinese) [赵玉新, 易仕和, 田立丰, 何霖, 程忠宇 2010 中国科学: 科学技术 40 695]

    [22]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 184702]

    [23]

    Wu L Y, Wang Z G, Li Q L, Li C 2014 zl201410800056.5

    [24]

    Otsu N 1979 IEEE Trans. Syst. Man Cybernet. 9 62

    [25]

    Humble R A, Peltier S J, Bowersox R D W 2012 Phys. Fluids 24 106103

  • [1] Yang Zhen-Yu, Zhang Yuan-Zhe, Fan Wei, Yang Guang-Jie, Han Xian-Wei. Fluid simulation for detachment process in magnetic nozzle of magnetoplasma rocket engine. Acta Physica Sinica, 2024, 73(10): 105201. doi: 10.7498/aps.73.20231862
    [2] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [3] Liu Yong, Tu Guo-Hua, Xiang Xing-Hao, Li Xiao-Hu, Guo Qi-Long, Wan Bing-Bing. Parametrization of suppressing hypersonic second-mode waves by transverse rectangular microgrooves. Acta Physica Sinica, 2022, 71(19): 194701. doi: 10.7498/aps.71.20220851
    [4] Wu Ming-Xing,  Tian De-Yang,  Tang Pu,  Tian Jing,  He Zhiyuan,  Ma Ping. Study on Retrieval Method of Two-dimensional Distribution of Hypersonic Model Wake Electron Density. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212345
    [5] Wu Ming-Xing, Tian De-Yang, Tang Pu, Tian Jing, He Zi-Yuan, Ma Ping. Inversion method of two-dimensional distribution of electron density in hypersonic model wake. Acta Physica Sinica, 2022, 71(11): 115202. doi: 10.7498/aps.70.20212345
    [6] Jin Xuan, Shen Chi-Bing. Fragmentation and atomization characteristics of near-orifice liquid jet under transverse gas film. Acta Physica Sinica, 2022, 71(11): 114701. doi: 10.7498/aps.71.20212374
    [7] Zhang Bin, Cheng Peng, Li Qing-Lian, Chen Hui-Yuan, Li Chen-Yang. Breakup process of liquid jet in gas film. Acta Physica Sinica, 2021, 70(5): 054702. doi: 10.7498/aps.70.20201384
    [8] Guo Guang-Ming, Zhu Lin, Xing Bo-Yang. Density distribution characteristics of fluid inside vortex in supersonic mixing layer. Acta Physica Sinica, 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [9] Zhou Yao-Zhi, Li Chun, Li Chen-Yang, Li Qing-Lian. Prediction of liquid jet trajectory in supersonic crossflow and continuous liquid column model. Acta Physica Sinica, 2020, 69(23): 234702. doi: 10.7498/aps.69.20200903
    [10] Wang Peng, Shen Chi-Bing. Mixing enhancement for supersonic mixing layer by using plasma synthetic jet. Acta Physica Sinica, 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [11] Xu Hao, Wang Cong, Lu Hong-Zhi, Huang Wen-Hu. Experimental study on submerged supersonic gaseous jet induced tail cavity. Acta Physica Sinica, 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [12] He Lin, Yi Shi-He, Lu Xiao-Ge. Experimental study on the density characteristics of a supersonic turbulent boundary layer. Acta Physica Sinica, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [13] Wu Wen-Hua, Zhai Wei, Hu Hai-Bao, Wei Bing-Bo. Acoustic field and convection pattern within liquid material during ultrasonic processing. Acta Physica Sinica, 2017, 66(19): 194303. doi: 10.7498/aps.66.194303
    [14] Liu Qiang, Luo Zhen-Bing, Deng Xiong, Yang Sheng-Ke, Jiang Hao. Linear stability of supersonic boundary layer with synthetic cold/hot jet control. Acta Physica Sinica, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [15] Zhang Xiao-Shi, Xu Hao, Wang Cong, Lu Hong-Zhi, Zhao Jing. Experimental study on underwater supersonic gas jets in water flow. Acta Physica Sinica, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [16] Zhu Li, Liu Shang-He, Zheng Hui-Zhi, Wei Ming, Hu Xiao-Feng, Sorokin Andrey. Modeling and experimental study of the mechanism of electrification from aero-engine jet. Acta Physica Sinica, 2013, 62(22): 225201. doi: 10.7498/aps.62.225201
    [17] Zhang Qiang, Chen Xin, He Li-Ming, Rong Kang. An experimental study of rectangular under-expanded supersonic jets collision. Acta Physica Sinica, 2013, 62(8): 084706. doi: 10.7498/aps.62.084706
    [18] Yuan Xing-Qiu, Li Hui, Zhao Tai-Ze, Yu Guo-Yang, Guo Wen-Kang, Xu Ping. Numerical modeling of supersonic plasma jet. Acta Physica Sinica, 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
    [19] ZHOU YI-CHANG, YU CHAO-FAN. SUBSONIC AND SUPERSONIC SOLITONS IN ONE DIMENSIONAL LINEAR CHAINS. Acta Physica Sinica, 1992, 41(12): 2016-2023. doi: 10.7498/aps.41.2016
    [20] CHUANG FENG-KAN. ON THE SUPERSONIC MOTION OF CHAPLYGIN GAS. Acta Physica Sinica, 1955, 11(2): 107-124. doi: 10.7498/aps.11.107
Metrics
  • Abstract views:  7085
  • PDF Downloads:  233
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2015
  • Accepted Date:  19 January 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map