-
针对合金熔体等液体材料的超声处理过程,选取水作为透明模型材料,采用数值模拟计算和示踪粒子实验方法,研究了20和490 kHz两种频率超声作用下水中的声场和流场分布.结果表明,增大变幅杆半径能够提高水中声压水平,扩大空化效应的发生区域.当超声频率为20 kHz时,水中声压最大值出现在超声变幅杆下端面处,且声压沿传播距离的增大而显著减小.如果超声频率增加至490 kHz,水中的声压级相比于20 kHz时明显提高,且声压沿着超声传播方向呈现出周期性振荡特征.两种频率超声作用下水中的流场呈现相似的分布特征,且平均流速均随着变幅杆半径增大表现出先升高后降低的趋势.变幅杆半径相同时,20 kHz频率超声作用下水中的平均流速高于490 kHz频率超声.采用示踪粒子图像测速技术实时观察和测定了水中的流速分布,发现其与计算结果基本一致.When ultrasound propagates in a liquid alloy, nonlinear effect takes place such as cavitation effect and acoustic streaming, which accelerates the solute and thermal transportation during alloy solidification, and consequently, improves the solidification microstructures and mechanical properties of the metallic alloy. Therefore, it is significant to investigate the ultrasound propagation characteristics in liquid. Here, by choosing water as a model transparent material, the acoustic fields and flow fields induced by 20 and 490 kHz ultrasounds are investigated by numerical simulation, and the effects of frequency and ultrasonic horn radius are studied. Firstly, the simulation results demonstrate that the sound pressure under 20 kHz ultrasound decreases obviously along the ultrasonic propagation direction, and the maximum of sound pressure value is equal to the initial pressure. In this case, the cavitation effect only occurs in the region close to the ultrasonic horn. By contrast, when the ultrasonic frequency increases to 490 kHz, the sound pressure is higher than that of 20 kHz ultrasound, and displays periodical vibration characteristic along the wave propagation direction. The cavitation volume correspondingly expands to a large extent with a regular striped distribution. It can also be found that increasing the ultrasonic horn radius under 20 and 490 kHz ultrasounds can effectively promote the sound pressure level in water, and hence leads to the remarkable enlargement of cavitation volume. Secondly, the calculated results of flow field indicate that the streamlines in water are similar under the two ultrasounds with different frequencies. A jet produced by the center of horn spreads down and divergences to both sides after reaching the bottom. For both frequencies as the horn radius increases, the radius of jet increases and the average velocity in water first increases and then decreases, whose maximum value appears when the horn radius is 40 mm. Meanwhile, the average velocity under 20 kHz ultrasound is larger than that under 490 kHz ultrasound for each horn radius. Finally, particle image velocimetry method is employed to measure the velocity field in water. Both the positions of eddy and the velocity distribution are the same as the simulation results, which verifies the reliability of the present theoretical calculation model. The scenario in this work is analogous to the acoustic field and the flow field in liquid alloy, which is beneficial for the design of parameter optimization during ultrasonic processing in alloy solidification.
-
Keywords:
- ultrasound /
- acoustic field /
- flow field /
- cavitation effect
[1] Jian X, Xu H, Meek T T, Han Q 2005 Matter Lett. 59 190
[2] Zhang S, Yin L, Fang N 2009 Phys. Rev. Lett. 102 194301
[3] Zhao F Z, Zhu S Z, Feng X H, Yang Y S 2015 Acta Phys.Sin. 64 144302 (in Chinese) [赵福泽, 朱绍珍, 冯小辉, 杨院生 2015 64 144302]
[4] Zhai W, Hong Z Y, Wei B B 2007 Sci. China Ser. G 37 367 (in Chinese) [翟薇, 洪振宇, 魏炳波 2007 中国科学 G: 物理学 力学 天文学 37 367]
[5] Chen R, Zheng D, Guo J, Ma T, Ding H, Su Y 2016 Mater. Sci. Eng. A 653 23
[6] Bang J H, Suslick K S 2010 Adv. Mater. 22 1039
[7] Zhai W, Hu L, Geng D L, Wei B B 2015 J. Alloy. Compd. 627 402
[8] Huang H J, Xu Y F, Shu D, Han Y F, Wang J, Sun B D 2014 Trans. Nonferrous Met. Soc. China 24 2414
[9] Gerold B, Glynnejones P, Mcdougall C, Mcgloin D, Cochran S, Melzer A 2008 Appl. Phys. Lett. 93 254107
[10] Zhai W, Wei B B 2015 Mater. Lett. 138 1
[11] Dijkink R, Ohl C D 2008 Appl. Phys. Lett. 93 254107
[12] Muller P B, Bruus H 2015 Phys. Rev. E 92 063018
[13] Loh B G, Lee D R, Kwon K 2006 Appl. Phys. Lett. 89 2367
[14] Zhai W, Liu H M, Hong Z Y, Xie W J, Wei B B 2017 Ultrason. Sonochem. 34 130
[15] Tzanakis I, Lebon G S, Eskin D G, Pericleous K A 2017 Ultrason. Sonochem. 34 651
[16] Trujillo F J, Kai K 2011 Ultrason. Sonochem. 18 1263
[17] Kojima Y, Asakura Y, Sugiyama G, Koda S 2010 Ultrason. Sonochem. 17 978
[18] Tzanakis I, Lebon G S, Eskin D G, Pericleous K A 2017 Ultrason. Sonochem. 34 651
[19] Dahlem O, Reisse J, Halloin V 1999 Chem. Eng. Sci. 54 2829
[20] Xu Z, Yasuda K, Koda S 2013 Ultrason. Sonochem. 20 452
[21] Wu J, Du G 1993 Ultrasound Med. Biol. 19 167
[22] Aanonsen S I, Barkve T, Tjtta J N, Tjtta S 1984 J. Acoust. Soc. Am. 75 749
[23] Nightingale K R, Trahey G E 2000 IEEE Trans. Ultrason. Ferr 47 201
[24] Cheng J C 2012 Acoustics Principle (Beijing:Science Press) p828 (in Chinese)[程建春 2012 声学原理 (北京:科学出版社) 第828页]
-
[1] Jian X, Xu H, Meek T T, Han Q 2005 Matter Lett. 59 190
[2] Zhang S, Yin L, Fang N 2009 Phys. Rev. Lett. 102 194301
[3] Zhao F Z, Zhu S Z, Feng X H, Yang Y S 2015 Acta Phys.Sin. 64 144302 (in Chinese) [赵福泽, 朱绍珍, 冯小辉, 杨院生 2015 64 144302]
[4] Zhai W, Hong Z Y, Wei B B 2007 Sci. China Ser. G 37 367 (in Chinese) [翟薇, 洪振宇, 魏炳波 2007 中国科学 G: 物理学 力学 天文学 37 367]
[5] Chen R, Zheng D, Guo J, Ma T, Ding H, Su Y 2016 Mater. Sci. Eng. A 653 23
[6] Bang J H, Suslick K S 2010 Adv. Mater. 22 1039
[7] Zhai W, Hu L, Geng D L, Wei B B 2015 J. Alloy. Compd. 627 402
[8] Huang H J, Xu Y F, Shu D, Han Y F, Wang J, Sun B D 2014 Trans. Nonferrous Met. Soc. China 24 2414
[9] Gerold B, Glynnejones P, Mcdougall C, Mcgloin D, Cochran S, Melzer A 2008 Appl. Phys. Lett. 93 254107
[10] Zhai W, Wei B B 2015 Mater. Lett. 138 1
[11] Dijkink R, Ohl C D 2008 Appl. Phys. Lett. 93 254107
[12] Muller P B, Bruus H 2015 Phys. Rev. E 92 063018
[13] Loh B G, Lee D R, Kwon K 2006 Appl. Phys. Lett. 89 2367
[14] Zhai W, Liu H M, Hong Z Y, Xie W J, Wei B B 2017 Ultrason. Sonochem. 34 130
[15] Tzanakis I, Lebon G S, Eskin D G, Pericleous K A 2017 Ultrason. Sonochem. 34 651
[16] Trujillo F J, Kai K 2011 Ultrason. Sonochem. 18 1263
[17] Kojima Y, Asakura Y, Sugiyama G, Koda S 2010 Ultrason. Sonochem. 17 978
[18] Tzanakis I, Lebon G S, Eskin D G, Pericleous K A 2017 Ultrason. Sonochem. 34 651
[19] Dahlem O, Reisse J, Halloin V 1999 Chem. Eng. Sci. 54 2829
[20] Xu Z, Yasuda K, Koda S 2013 Ultrason. Sonochem. 20 452
[21] Wu J, Du G 1993 Ultrasound Med. Biol. 19 167
[22] Aanonsen S I, Barkve T, Tjtta J N, Tjtta S 1984 J. Acoust. Soc. Am. 75 749
[23] Nightingale K R, Trahey G E 2000 IEEE Trans. Ultrason. Ferr 47 201
[24] Cheng J C 2012 Acoustics Principle (Beijing:Science Press) p828 (in Chinese)[程建春 2012 声学原理 (北京:科学出版社) 第828页]
计量
- 文章访问数: 6901
- PDF下载量: 368
- 被引次数: 0