搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体材料超声处理过程中声场和流场的分布规律研究

吴文华 翟薇 胡海豹 魏炳波

引用本文:
Citation:

液体材料超声处理过程中声场和流场的分布规律研究

吴文华, 翟薇, 胡海豹, 魏炳波

Acoustic field and convection pattern within liquid material during ultrasonic processing

Wu Wen-Hua, Zhai Wei, Hu Hai-Bao, Wei Bing-Bo
PDF
导出引用
  • 针对合金熔体等液体材料的超声处理过程,选取水作为透明模型材料,采用数值模拟计算和示踪粒子实验方法,研究了20和490 kHz两种频率超声作用下水中的声场和流场分布.结果表明,增大变幅杆半径能够提高水中声压水平,扩大空化效应的发生区域.当超声频率为20 kHz时,水中声压最大值出现在超声变幅杆下端面处,且声压沿传播距离的增大而显著减小.如果超声频率增加至490 kHz,水中的声压级相比于20 kHz时明显提高,且声压沿着超声传播方向呈现出周期性振荡特征.两种频率超声作用下水中的流场呈现相似的分布特征,且平均流速均随着变幅杆半径增大表现出先升高后降低的趋势.变幅杆半径相同时,20 kHz频率超声作用下水中的平均流速高于490 kHz频率超声.采用示踪粒子图像测速技术实时观察和测定了水中的流速分布,发现其与计算结果基本一致.
    When ultrasound propagates in a liquid alloy, nonlinear effect takes place such as cavitation effect and acoustic streaming, which accelerates the solute and thermal transportation during alloy solidification, and consequently, improves the solidification microstructures and mechanical properties of the metallic alloy. Therefore, it is significant to investigate the ultrasound propagation characteristics in liquid. Here, by choosing water as a model transparent material, the acoustic fields and flow fields induced by 20 and 490 kHz ultrasounds are investigated by numerical simulation, and the effects of frequency and ultrasonic horn radius are studied. Firstly, the simulation results demonstrate that the sound pressure under 20 kHz ultrasound decreases obviously along the ultrasonic propagation direction, and the maximum of sound pressure value is equal to the initial pressure. In this case, the cavitation effect only occurs in the region close to the ultrasonic horn. By contrast, when the ultrasonic frequency increases to 490 kHz, the sound pressure is higher than that of 20 kHz ultrasound, and displays periodical vibration characteristic along the wave propagation direction. The cavitation volume correspondingly expands to a large extent with a regular striped distribution. It can also be found that increasing the ultrasonic horn radius under 20 and 490 kHz ultrasounds can effectively promote the sound pressure level in water, and hence leads to the remarkable enlargement of cavitation volume. Secondly, the calculated results of flow field indicate that the streamlines in water are similar under the two ultrasounds with different frequencies. A jet produced by the center of horn spreads down and divergences to both sides after reaching the bottom. For both frequencies as the horn radius increases, the radius of jet increases and the average velocity in water first increases and then decreases, whose maximum value appears when the horn radius is 40 mm. Meanwhile, the average velocity under 20 kHz ultrasound is larger than that under 490 kHz ultrasound for each horn radius. Finally, particle image velocimetry method is employed to measure the velocity field in water. Both the positions of eddy and the velocity distribution are the same as the simulation results, which verifies the reliability of the present theoretical calculation model. The scenario in this work is analogous to the acoustic field and the flow field in liquid alloy, which is beneficial for the design of parameter optimization during ultrasonic processing in alloy solidification.
      通信作者: 翟薇, zhaiwei322@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51327901,51571164)、陕西省科技新星项目(批准号:2016KJXX-85)和陕西省科技统筹创新工程重点实验室项目资助的课题.
      Corresponding author: Zhai Wei, zhaiwei322@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51327901, 51571164), Shaanxi Province Science and Technology Star Project (Grant No. 2016KJXX-85) and Shaanxi Province Science and Technology Innovation Project Key Laboratory Project, China.
    [1]

    Jian X, Xu H, Meek T T, Han Q 2005 Matter Lett. 59 190

    [2]

    Zhang S, Yin L, Fang N 2009 Phys. Rev. Lett. 102 194301

    [3]

    Zhao F Z, Zhu S Z, Feng X H, Yang Y S 2015 Acta Phys.Sin. 64 144302 (in Chinese) [赵福泽, 朱绍珍, 冯小辉, 杨院生 2015 64 144302]

    [4]

    Zhai W, Hong Z Y, Wei B B 2007 Sci. China Ser. G 37 367 (in Chinese) [翟薇, 洪振宇, 魏炳波 2007 中国科学 G: 物理学 力学 天文学 37 367]

    [5]

    Chen R, Zheng D, Guo J, Ma T, Ding H, Su Y 2016 Mater. Sci. Eng. A 653 23

    [6]

    Bang J H, Suslick K S 2010 Adv. Mater. 22 1039

    [7]

    Zhai W, Hu L, Geng D L, Wei B B 2015 J. Alloy. Compd. 627 402

    [8]

    Huang H J, Xu Y F, Shu D, Han Y F, Wang J, Sun B D 2014 Trans. Nonferrous Met. Soc. China 24 2414

    [9]

    Gerold B, Glynnejones P, Mcdougall C, Mcgloin D, Cochran S, Melzer A 2008 Appl. Phys. Lett. 93 254107

    [10]

    Zhai W, Wei B B 2015 Mater. Lett. 138 1

    [11]

    Dijkink R, Ohl C D 2008 Appl. Phys. Lett. 93 254107

    [12]

    Muller P B, Bruus H 2015 Phys. Rev. E 92 063018

    [13]

    Loh B G, Lee D R, Kwon K 2006 Appl. Phys. Lett. 89 2367

    [14]

    Zhai W, Liu H M, Hong Z Y, Xie W J, Wei B B 2017 Ultrason. Sonochem. 34 130

    [15]

    Tzanakis I, Lebon G S, Eskin D G, Pericleous K A 2017 Ultrason. Sonochem. 34 651

    [16]

    Trujillo F J, Kai K 2011 Ultrason. Sonochem. 18 1263

    [17]

    Kojima Y, Asakura Y, Sugiyama G, Koda S 2010 Ultrason. Sonochem. 17 978

    [18]

    Tzanakis I, Lebon G S, Eskin D G, Pericleous K A 2017 Ultrason. Sonochem. 34 651

    [19]

    Dahlem O, Reisse J, Halloin V 1999 Chem. Eng. Sci. 54 2829

    [20]

    Xu Z, Yasuda K, Koda S 2013 Ultrason. Sonochem. 20 452

    [21]

    Wu J, Du G 1993 Ultrasound Med. Biol. 19 167

    [22]

    Aanonsen S I, Barkve T, Tjtta J N, Tjtta S 1984 J. Acoust. Soc. Am. 75 749

    [23]

    Nightingale K R, Trahey G E 2000 IEEE Trans. Ultrason. Ferr 47 201

    [24]

    Cheng J C 2012 Acoustics Principle (Beijing:Science Press) p828 (in Chinese)[程建春 2012 声学原理 (北京:科学出版社) 第828页]

  • [1]

    Jian X, Xu H, Meek T T, Han Q 2005 Matter Lett. 59 190

    [2]

    Zhang S, Yin L, Fang N 2009 Phys. Rev. Lett. 102 194301

    [3]

    Zhao F Z, Zhu S Z, Feng X H, Yang Y S 2015 Acta Phys.Sin. 64 144302 (in Chinese) [赵福泽, 朱绍珍, 冯小辉, 杨院生 2015 64 144302]

    [4]

    Zhai W, Hong Z Y, Wei B B 2007 Sci. China Ser. G 37 367 (in Chinese) [翟薇, 洪振宇, 魏炳波 2007 中国科学 G: 物理学 力学 天文学 37 367]

    [5]

    Chen R, Zheng D, Guo J, Ma T, Ding H, Su Y 2016 Mater. Sci. Eng. A 653 23

    [6]

    Bang J H, Suslick K S 2010 Adv. Mater. 22 1039

    [7]

    Zhai W, Hu L, Geng D L, Wei B B 2015 J. Alloy. Compd. 627 402

    [8]

    Huang H J, Xu Y F, Shu D, Han Y F, Wang J, Sun B D 2014 Trans. Nonferrous Met. Soc. China 24 2414

    [9]

    Gerold B, Glynnejones P, Mcdougall C, Mcgloin D, Cochran S, Melzer A 2008 Appl. Phys. Lett. 93 254107

    [10]

    Zhai W, Wei B B 2015 Mater. Lett. 138 1

    [11]

    Dijkink R, Ohl C D 2008 Appl. Phys. Lett. 93 254107

    [12]

    Muller P B, Bruus H 2015 Phys. Rev. E 92 063018

    [13]

    Loh B G, Lee D R, Kwon K 2006 Appl. Phys. Lett. 89 2367

    [14]

    Zhai W, Liu H M, Hong Z Y, Xie W J, Wei B B 2017 Ultrason. Sonochem. 34 130

    [15]

    Tzanakis I, Lebon G S, Eskin D G, Pericleous K A 2017 Ultrason. Sonochem. 34 651

    [16]

    Trujillo F J, Kai K 2011 Ultrason. Sonochem. 18 1263

    [17]

    Kojima Y, Asakura Y, Sugiyama G, Koda S 2010 Ultrason. Sonochem. 17 978

    [18]

    Tzanakis I, Lebon G S, Eskin D G, Pericleous K A 2017 Ultrason. Sonochem. 34 651

    [19]

    Dahlem O, Reisse J, Halloin V 1999 Chem. Eng. Sci. 54 2829

    [20]

    Xu Z, Yasuda K, Koda S 2013 Ultrason. Sonochem. 20 452

    [21]

    Wu J, Du G 1993 Ultrasound Med. Biol. 19 167

    [22]

    Aanonsen S I, Barkve T, Tjtta J N, Tjtta S 1984 J. Acoust. Soc. Am. 75 749

    [23]

    Nightingale K R, Trahey G E 2000 IEEE Trans. Ultrason. Ferr 47 201

    [24]

    Cheng J C 2012 Acoustics Principle (Beijing:Science Press) p828 (in Chinese)[程建春 2012 声学原理 (北京:科学出版社) 第828页]

  • [1] 张颖, 吴文华, 王建元, 翟薇. 超声场中气泡稳态空化对枝晶生长过程的作用机制.  , 2022, 71(24): 244303. doi: 10.7498/aps.71.20221101
    [2] 宋人杰, 袁紫燕, 张琪, 于洁, 薛洪惠, 屠娟, 章东. 基于超声RF信号熵分析的声空化时空监测方法.  , 2022, 71(17): 174301. doi: 10.7498/aps.71.20220558
    [3] 朱海龙, 李雪迎, 童洪辉. 三维数值模拟射频热等离子体的物理场分布.  , 2021, 70(15): 155202. doi: 10.7498/aps.70.20202135
    [4] 刘金河, 沈壮志, 林书玉. 机械搅拌对声空化动力学特性的影响.  , 2021, 70(22): 224301. doi: 10.7498/aps.70.20211244
    [5] 屈广宁, 凡凤仙, 张斯宏, 苏明旭. 驻波声场中单分散细颗粒的相互作用特性.  , 2020, 69(6): 064704. doi: 10.7498/aps.69.20191681
    [6] 冯康艺, 王成会. 超声场中空化泡对弹性粒子微流的影响.  , 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [7] 罗忠兵, 董慧君, 马志远, 邹龙江, 朱效磊, 林莉. 铸造奥氏体不锈钢中铁素体与奥氏体位向关系及其对声衰减的影响.  , 2018, 67(23): 238102. doi: 10.7498/aps.67.20181251
    [8] 郭策, 祝锡晶, 王建青, 叶林征. 超声场下刚性界面附近溃灭空化气泡的速度分析.  , 2016, 65(4): 044304. doi: 10.7498/aps.65.044304
    [9] 孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章. 基于多模态信号的金属材料缺陷无损检测方法.  , 2016, 65(16): 167802. doi: 10.7498/aps.65.167802
    [10] 喻晓, 沈杰, 钟昊玟, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲电子束辐照材料表面形貌演化的模拟.  , 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [11] 卢璐, 吉鸿飞, 郭各朴, 郭霞生, 屠娟, 邱媛媛, 章东. 超声增强藻酸钙凝胶支架材料孔隙率的研究.  , 2015, 64(2): 024301. doi: 10.7498/aps.64.024301
    [12] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声制备碳纳米管增强AZ91D复合材料的声场模拟.  , 2015, 64(14): 144302. doi: 10.7498/aps.64.144302
    [13] 宋文华, 胡涛, 郭圣明, 马力. 浅海内波影响下的波导不变量变化特性分析.  , 2014, 63(19): 194303. doi: 10.7498/aps.63.194303
    [14] 彭京思, 彭虎. 一种适用于超声多普勒血流速度测量的混沌调频连续波的研究.  , 2012, 61(24): 248701. doi: 10.7498/aps.61.248701
    [15] 沈壮志, 吴胜举. 声场与电场作用下空化泡的动力学特性.  , 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [16] 孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳. 界面条件下线型超声相控阵声场特性研究.  , 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [17] 张鹏利, 林书玉. 声场作用下两空化泡相互作用的研究.  , 2009, 58(11): 7797-7801. doi: 10.7498/aps.58.7797
    [18] 汤立国, 许肖梅, 刘胜兴. 海底爆破辐射声场的理论及数值研究.  , 2008, 57(7): 4251-4257. doi: 10.7498/aps.57.4251
    [19] 袁艳红, 侯 洵, 高 恒. 超声处理对ZnO薄膜光致发光特性的影响.  , 2006, 55(1): 446-449. doi: 10.7498/aps.55.446
    [20] 李凤英, 傅顺声, 王汝菊, M.H.Manghnani. 钠玻璃与钛玻璃在静水压下的弹性性能.  , 2000, 49(11): 2129-2132. doi: 10.7498/aps.49.2129
计量
  • 文章访问数:  6901
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-27
  • 修回日期:  2017-07-15
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map