Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on submerged supersonic gaseous jet induced tail cavity

Xu Hao Wang Cong Lu Hong-Zhi Huang Wen-Hu

Citation:

Experimental study on submerged supersonic gaseous jet induced tail cavity

Xu Hao, Wang Cong, Lu Hong-Zhi, Huang Wen-Hu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Multiphase jets and cavitation problems are inevitable for high-speed underwater vehicles propelled by jet engines. Unlike being injected into stagnant water, the gaseous jet behind a underwater vehicle is usually conjugated with a tail cavity. The pulsation and collapse of such cavities can seriously affect the vehicle performance. In this study, the shape character, forming mechanism and control conditions for the supersonic gaseous jet induced tail cavity at the wake of a revolution body are experimentally investigated in a water tunnel. The induced cavity is ventilated only by a convergent-divergent nozzle with a designed Mach number of 2.45. The form of the cavity is recorded through two high-speed cameras both horizontally and vertically under different Froude numbers and ventilation rates. The time averaged form is thus obtained through digital image processing to eliminate the transient characteristics of the cavity. The experiment is conducted with the Froude number ranging from 3.2 to 16.2, and the ventilation rate 0 to 0.5. Due to the high density and velocity ratio between water and gas, the structure of such flow is usually very complicated. Many novel phenomena of the jet-cavity interaction are observed. With increasing stagnation pressure of the central jet, the induced cavities evolves form foamy, intact, partially break, to pulsating foamy closure type. The foamy and intact tail cavities share the same profile and characteristics that of a supercavity. And the pulsating foamy closure type was never observed before in a traditional supercavitating flow. The outline of the pulsating foamy cavity is the same as the foamy cavity's, indicating that they have the similar forming mechanism. A comparison with the jet-cavity interaction model is made and the following conclusions are obtained:the real ventilation rate, which corresponds to the re-entrant jet gas blocked by the cavity boundary, is the key factor in controlling the cavity form. When the gaseous jet is completely blocked by the water-gas interface, an intact or foamy cavity will be formed. A partially break cavity appears only when some fraction of the jet is blocked and this is when some of the strongest interactions between jet and cavity occurs. When little gas was blocked by the interface, a pulsating foamy cavity forms. With the structure of gaseous jet considered, the transition of the induced cavity closure between different types is in favour of the prediction from Paryshev's model of cavity closure to a central jet. The variation of the cavity form, thus the interaction strength between jet and cavity, coincides with the real ventilation rate estimated through the theoretical model.
      Corresponding author: Wang Cong, alanwang@hit.edu.cn
    • Funds: Project supported by the International Science Technology Cooperation Program of China (Grant No. 2015DFA70840).
    [1]

    Karn A, Arndt R E A, Hong J R 2016 J. Fluid Mech. 789 259

    [2]

    Wosnik M, Arndt R E A 2013 J. Fluids Eng. 135 011304

    [3]

    Shi H H, Wang J F, Chen S, Dong R L 2014 J. USTC 233 (in Chinese) [施红辉, 汪剑锋, 陈帅, 董若凌 2014 中国科学技术大学学报 233]

    [4]

    Wang C, Shi H H, Wang J F 2016 CIESC J. 67 2291(in Chinese) [王超, 施红辉, 汪剑锋 2016 化工学报 67 2291]

    [5]

    Berna C, Julia J E, Escriva A, Munoz-Cobo J L, Pastor J V, Mico C 2017 Exp. Therm Fluid Sci. 82 32

    [6]

    Kishnan M 2013 Annu. Rev. Fluid Mech. 45 379

    [7]

    Makiharju S A, Lee I H R, Filip G P, Maki K J, Ceccio S L 2017 J. Fluid Mech. 818 141

    [8]

    Rek Z, Gregorc J, Bouaifi M, Daniel C 2017 Chem. Eng. Sci. 172 667

    [9]

    Paryshev E V 2006 J. Eng. Math. 55 41

    [10]

    Kirschner I, Moeny M, Krane M, Kinzel M 2015 J. Phys.: Conference Series Lausanne, Switzerland, December 6-10, 2015 p012156

    [11]

    Moeny M, Krane M, Kirschner I, Kinzel M 2015 J. Phys.: Conference Series Lausanne, Switzerland, December 6-10, 2015 p012162

    [12]

    Kinzel M P, Krane M H, Kirschner I N, Moeny M J 2017 Ocean Eng. 136 304

    [13]

    He X, Lu C J, Cheng X 2010 J. Hydrodyn. 367 (in Chinese) [何晓, 鲁传敬, 陈鑫 2010 水动力学研究与进展: A辑 367]

    [14]

    Yi S H 2013 Supersonic and Hypersonic Nozzle Design (Beijing: National Defense Industry Press) p77 (in Chinese) [易仕和 2013 超声速与高超声速喷管设计(北京: 国防工业出版社)第77页]

    [15]

    Zhang X W, Wei Y J, Zhang J Z, Wang C, Yu K P 2007 J. Hydrodyn. 19 564

    [16]

    Kawakami E, Arndt R E 2011 J. Fluids Eng. 133 091305

    [17]

    Spazzini P G, Iuso G, Onorato M, Zurlo N, Di Cicca G M 2001 Exp. Fluids 30 551

    [18]

    Drazin P G, Reid W H 2004 Hydrodynamic Stability (Cambridge: Cambridge University Press) p17

    [19]

    Logvinovich G V 1972 Hydrodynamics of Free-boundary Flows (Jerusalem: Israel Program for Scientific Translations Ltd.) p109

    [20]

    Zhao F, Zhang Y L, Zhu R, Wang H 2014 J. USTB 36 366(in Chinese) [赵飞, 张延玲, 朱荣, 王慧 2014 北京科技大学学报 36 366]

    [21]

    Zhang X S, Xu H, Wang C, Lu H Z, Zhao J 2017 Acta Phys. Sin. 66 054702(in Chinese) [张孝石, 许昊, 王聪, 陆宏志, 赵静 2017 66 054702]

  • [1]

    Karn A, Arndt R E A, Hong J R 2016 J. Fluid Mech. 789 259

    [2]

    Wosnik M, Arndt R E A 2013 J. Fluids Eng. 135 011304

    [3]

    Shi H H, Wang J F, Chen S, Dong R L 2014 J. USTC 233 (in Chinese) [施红辉, 汪剑锋, 陈帅, 董若凌 2014 中国科学技术大学学报 233]

    [4]

    Wang C, Shi H H, Wang J F 2016 CIESC J. 67 2291(in Chinese) [王超, 施红辉, 汪剑锋 2016 化工学报 67 2291]

    [5]

    Berna C, Julia J E, Escriva A, Munoz-Cobo J L, Pastor J V, Mico C 2017 Exp. Therm Fluid Sci. 82 32

    [6]

    Kishnan M 2013 Annu. Rev. Fluid Mech. 45 379

    [7]

    Makiharju S A, Lee I H R, Filip G P, Maki K J, Ceccio S L 2017 J. Fluid Mech. 818 141

    [8]

    Rek Z, Gregorc J, Bouaifi M, Daniel C 2017 Chem. Eng. Sci. 172 667

    [9]

    Paryshev E V 2006 J. Eng. Math. 55 41

    [10]

    Kirschner I, Moeny M, Krane M, Kinzel M 2015 J. Phys.: Conference Series Lausanne, Switzerland, December 6-10, 2015 p012156

    [11]

    Moeny M, Krane M, Kirschner I, Kinzel M 2015 J. Phys.: Conference Series Lausanne, Switzerland, December 6-10, 2015 p012162

    [12]

    Kinzel M P, Krane M H, Kirschner I N, Moeny M J 2017 Ocean Eng. 136 304

    [13]

    He X, Lu C J, Cheng X 2010 J. Hydrodyn. 367 (in Chinese) [何晓, 鲁传敬, 陈鑫 2010 水动力学研究与进展: A辑 367]

    [14]

    Yi S H 2013 Supersonic and Hypersonic Nozzle Design (Beijing: National Defense Industry Press) p77 (in Chinese) [易仕和 2013 超声速与高超声速喷管设计(北京: 国防工业出版社)第77页]

    [15]

    Zhang X W, Wei Y J, Zhang J Z, Wang C, Yu K P 2007 J. Hydrodyn. 19 564

    [16]

    Kawakami E, Arndt R E 2011 J. Fluids Eng. 133 091305

    [17]

    Spazzini P G, Iuso G, Onorato M, Zurlo N, Di Cicca G M 2001 Exp. Fluids 30 551

    [18]

    Drazin P G, Reid W H 2004 Hydrodynamic Stability (Cambridge: Cambridge University Press) p17

    [19]

    Logvinovich G V 1972 Hydrodynamics of Free-boundary Flows (Jerusalem: Israel Program for Scientific Translations Ltd.) p109

    [20]

    Zhao F, Zhang Y L, Zhu R, Wang H 2014 J. USTB 36 366(in Chinese) [赵飞, 张延玲, 朱荣, 王慧 2014 北京科技大学学报 36 366]

    [21]

    Zhang X S, Xu H, Wang C, Lu H Z, Zhao J 2017 Acta Phys. Sin. 66 054702(in Chinese) [张孝石, 许昊, 王聪, 陆宏志, 赵静 2017 66 054702]

  • [1] Wu Ming-Xing, Tian De-Yang, Tang Pu, Tian Jing, He Zi-Yuan, Ma Ping. Inversion method of two-dimensional distribution of electron density in hypersonic model wake. Acta Physica Sinica, 2022, 71(11): 115202. doi: 10.7498/aps.70.20212345
    [2] Tang Bing-Liang, Guo Shan-Guang, Song Guo-Zheng, Luo Yan-Hao. Experimental study on supersonic plate boundary layer transition under pulsed arc plasma excitation control. Acta Physica Sinica, 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [3] Zhang Bo, He Lin, Yi Shi-He. Wavelet analysis of density fluctuation in supersonic turbulent boundary layer. Acta Physica Sinica, 2020, 69(21): 214702. doi: 10.7498/aps.69.20200748
    [4] Wang Peng, Shen Chi-Bing. Mixing enhancement for supersonic mixing layer by using plasma synthetic jet. Acta Physica Sinica, 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [5] Zhang Xiao-Shi, Xu Hao, Wang Cong, Lu Hong-Zhi, Zhao Jing. Experimental study on underwater supersonic gas jets in water flow. Acta Physica Sinica, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [6] Yang Xiu-Feng, Liu Mou-Bin. Numerical study of Rayleigh-Taylor instability by using smoothed particle hydrodynamics. Acta Physica Sinica, 2017, 66(16): 164701. doi: 10.7498/aps.66.164701
    [7] He Lin, Yi Shi-He, Lu Xiao-Ge. Experimental study on the density characteristics of a supersonic turbulent boundary layer. Acta Physica Sinica, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [8] Sun Peng-Nan, Li Yun-Bo, Ming Fu-Ren. Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method. Acta Physica Sinica, 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [9] Zhu Yang-Zhu, Yi Shi-He, Kong Xiao-Ping, He Lin. Fine structures and characteristics on supersonic flow over backward facing step with tangential injection. Acta Physica Sinica, 2015, 64(6): 064701. doi: 10.7498/aps.64.064701
    [10] Gang Dun-Dian, Yi Shi-He, Zhao Yun-Fei. Experimental and numerical studies of supersonic flow over circular protuberances on a flat plate. Acta Physica Sinica, 2015, 64(5): 054705. doi: 10.7498/aps.64.054705
    [11] Song Bao-Wei, Ren Feng, Hu Hai-Bao, Guo Yun-He. Drag reduction on micro-structured hydrophobic surfaces due to surface tension effect. Acta Physica Sinica, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [12] Zhu Yang-Zhu, Yi Shi-He, Kong Xiao-Ping, Quan Peng-Cheng, Chen Zhi, Tian Li-Feng. Fine structures and the unsteadiness characteristics of supersonic flow over backward facing step via NPLS. Acta Physica Sinica, 2014, 63(13): 134701. doi: 10.7498/aps.63.134701
    [13] Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [14] Liu Han-Tao, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong. Dissipative particle dynamics simulation of multiphase flow through a mesoscopic channel. Acta Physica Sinica, 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [15] Qiang Hong-Fu, Shi Chao, Chen Fu-Zhen, Han Ya-Wei. Simulation of two-dimensional droplet collisions based on SPH method of multi-phase flows with large density differences. Acta Physica Sinica, 2013, 62(21): 214701. doi: 10.7498/aps.62.214701
    [16] Zhu Yang-Zhu, Yi Shi-He, Chen Zhi, Ge Yong, Wang Xiao-Hu, Fu Jia. Experimental investigation on aero-optical aberration of the supersonic flow passing through an optical dome with gas injection. Acta Physica Sinica, 2013, 62(8): 084219. doi: 10.7498/aps.62.084219
    [17] Nie Tao, Liu Wei-Qiang. Study of coupled fluid and solid for a hypersonic lending edge. Acta Physica Sinica, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [18] Chang Jian-Zhong, Liu Mou-Bin, Liu Han-Tao. Simulation of multiphase micro-drop dynamics using dissipative particle dynamics. Acta Physica Sinica, 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
    [19] Yuan Xing-Qiu, Li Hui, Zhao Tai-Ze, Yu Guo-Yang, Guo Wen-Kang, Xu Ping. Numerical modeling of supersonic plasma jet. Acta Physica Sinica, 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
    [20] CHUANG FENG-KAN. ON THE SUPERSONIC MOTION OF CHAPLYGIN GAS. Acta Physica Sinica, 1955, 11(2): 107-124. doi: 10.7498/aps.11.107
Metrics
  • Abstract views:  7200
  • PDF Downloads:  268
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2017
  • Accepted Date:  30 September 2017
  • Published Online:  05 January 2018

/

返回文章
返回
Baidu
map