-
Rectangular under-expanded supersonic jet collision experiment is carried out under different nozzle distances and jet pressures and compared with that in the case of free jet. Experiments indicate that there are four screech tone modes of supersonic jet collision, switched from one mode to another depending on the nozzle distance and jet pressure. Two normal shock waves are present between nozzles as jet pressure is more than 0.5 MPa and nozzle distance is less than 50 mm, radiating a stable screech tone with a frequency of about 3 kHz. With nozzle distance increasing or jet pressure decreasing, a bow shock is present at one nozzle exit and a normal shock wave appears at the other exit with the collision surface oscillating between them. Collision surface might be kept balanced in the centre of two nozzles with a 9 kHz frequency screech tone, however, it is vulnerable to disturbance and would return to the equilibrium position near nozzle exit or oscillate between nozzles with large amplitude. When jet pressure is less than 0.36 MPa and nozzle distance greater than 70 mm, the collision surface substantially oscillates between the nozzles, radiating a screech tone with a frequency of about 1 kHz which decreases with jet pressure decreasing and nozzle distance increasing.
-
Keywords:
- supersonic jets /
- screech tone /
- jets collision /
- shock wave
[1] Tam C K W 1998 Theoret. Comput. Fluid Dyn. 10 393
[2] He F, Yang J L, Shen M Y 2002 Acta Phys. Sin. 51 1918 (in Chinese) [何枫, 杨京龙, 沈孟育 2002 51 1918]
[3] Tam C K W 1995 Annu. Rev. Fluid Mech. 27 17
[4] Powell A 1953 Proc. Phys. Soc. London 66 1039
[5] Levin V A, Nechaev J N, Tarasov A I 2001 High-Speed Deflagration and Detonation (Moscow:ELEX-KM) p223
[6] Jackson S I, Shepherd J E 2004 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11-14, 2004 p3919
[7] Li H P 2010 Ph. D. Dissertation (Xi'an:Aire Fore Engineering University) (in Chinese) [李海鹏 2010 博士学位论文(西安:空军工程大学)]
[8] Lee J H, Knystautas R, Feriman A 1984 Combustion Flame 56 227
[9] Zhang Q, He L M, Chen X, Rong K 2012 J. Propulsion Technol. 33 499 (in Chinese) [张强, 何立明, 陈鑫, 荣康 2012 推进技术 33 499]
[10] Berland J, Bogey C, Bailly C 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, UN, May 8-10, 2006 p2496
[11] Panda J, Raman G, Zaman K B M Q 2004 NASA/TM 2004-212481
[12] Shen Z G, Ma S L, Lian Q X, Xing Y S, Liu C H 1988 Powder Science and Technol. 4 12 (in Chinese) [沈志刚, 麻树林, 连淇祥, 邢玉山, 刘承晖1998 粉体技术 4 12]
[13] He F, Xie J S, Yao C H 2002 J. Propulsion Technol. 29 98 (in Chinese) [何枫, 谢俊石, 姚朝晖 2002 推进技术 29 98]
[14] Cui X G, Yao C H 2008 J. Propulsion Technol. 29 98 (in Chinese) [崔新光, 姚朝晖 2008 推进技术 29 98]
[15] He F, Hao P F, Zhang X W 2003 Acta Acustica 28 182 (in Chinese) [何枫, 郝鹏飞, 张锡文 2003 声学学报 28 182]
-
[1] Tam C K W 1998 Theoret. Comput. Fluid Dyn. 10 393
[2] He F, Yang J L, Shen M Y 2002 Acta Phys. Sin. 51 1918 (in Chinese) [何枫, 杨京龙, 沈孟育 2002 51 1918]
[3] Tam C K W 1995 Annu. Rev. Fluid Mech. 27 17
[4] Powell A 1953 Proc. Phys. Soc. London 66 1039
[5] Levin V A, Nechaev J N, Tarasov A I 2001 High-Speed Deflagration and Detonation (Moscow:ELEX-KM) p223
[6] Jackson S I, Shepherd J E 2004 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11-14, 2004 p3919
[7] Li H P 2010 Ph. D. Dissertation (Xi'an:Aire Fore Engineering University) (in Chinese) [李海鹏 2010 博士学位论文(西安:空军工程大学)]
[8] Lee J H, Knystautas R, Feriman A 1984 Combustion Flame 56 227
[9] Zhang Q, He L M, Chen X, Rong K 2012 J. Propulsion Technol. 33 499 (in Chinese) [张强, 何立明, 陈鑫, 荣康 2012 推进技术 33 499]
[10] Berland J, Bogey C, Bailly C 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, UN, May 8-10, 2006 p2496
[11] Panda J, Raman G, Zaman K B M Q 2004 NASA/TM 2004-212481
[12] Shen Z G, Ma S L, Lian Q X, Xing Y S, Liu C H 1988 Powder Science and Technol. 4 12 (in Chinese) [沈志刚, 麻树林, 连淇祥, 邢玉山, 刘承晖1998 粉体技术 4 12]
[13] He F, Xie J S, Yao C H 2002 J. Propulsion Technol. 29 98 (in Chinese) [何枫, 谢俊石, 姚朝晖 2002 推进技术 29 98]
[14] Cui X G, Yao C H 2008 J. Propulsion Technol. 29 98 (in Chinese) [崔新光, 姚朝晖 2008 推进技术 29 98]
[15] He F, Hao P F, Zhang X W 2003 Acta Acustica 28 182 (in Chinese) [何枫, 郝鹏飞, 张锡文 2003 声学学报 28 182]
Catalog
Metrics
- Abstract views: 7273
- PDF Downloads: 738
- Cited By: 0