Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Upconversion flourescence characteristics of Er3+/Yb3+ codoped NaYF4 and LiYF4 microcrystals

Gao Wei Dong Jun Wang Rui-Bo Wang Zhao-Jin Zheng Hai-Rong

Citation:

Upconversion flourescence characteristics of Er3+/Yb3+ codoped NaYF4 and LiYF4 microcrystals

Gao Wei, Dong Jun, Wang Rui-Bo, Wang Zhao-Jin, Zheng Hai-Rong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Lanthanide-doped upconverting fluoride nano-and micro-materials have aroused much research interest due to their potential applications in phosphors, color displays, optical storages, solid-state lasers, solar cells and biomedical imaging. In order to synthesize Ln3+ doped crystals with favorable optical properties, such as high upconversion (UC) efficiency and controllable emission profile, the two major parameters that affect luminescence processes including host materials and lanthanide activator ions should be selected appropriately in the synthesis process. Majority of scientists deem that lanthanide doped fluoride nano-and micro-materials with low phonon energy are currently the efficient UC host materials. In this work, Yb3+ and Er3+ ions codoped NaYF4 and LiYF4 microcrystals are synthesized by a facile hydrothermal method with ethylene diamine tetraacetic acid (EDTA) as a chelator. The NaYF4:Yb3+/Er3+ and LiYF4:Yb3+/Er3+ microcrystals are characterized by X-ray diffraction (XRD), scanning electron microscope(SEM), and the photo-luminescence spectra method. The influences of EDTA on the crystal phase, shape and upconversion luminescence are explored in detail. According to the results of XRD and SEM, the pure hexagonal phased NaYF4:Yb3+/Er3+ rod-like microcrystals each with smooth surface are all around 12 m in the length. While the pure tetragonal phased LiYF4: Yb3+/Er3+ microcrystals each with smooth surface are octahedral in shape, and their average size is around 12 m. Under near infrared (NIR) 980 nm excitation, the two dominant emission peaks of Er3+ ions at 544 nm and at 650 nm are observed in NaYF4 and LiYF4 microcrystals, which can be assigned to the transitions of (2H11/2/4S3/2)4I15/2 and 4F9/24I15/2, respectively. It is found that the upconversion luminescence intensity of NaYF4:Yb3+/Er3+ microcrystals is about two times that of LiYF4:Yb3+/Er3+ microcrystals under the same excitation conditions. The ratio of red-to-green emission of Er3+ ions in LiYF4 microcrystals is higher than that of the NaYF4:Yb3+/Er3+microcrystals. The changes of the spectra in the different hosts could stem from two sources: one is that the nonradiation relaxation probability relative to phonon energy of matrix, the other is that the radiative transition probability relative to the site symmetry of the crystal field acting on the ion. The ratios between 5D07F1 and 5D07F2 transitions of Eu3+ ions in NaYF4:Yb3+/Eu3+ and LiYF4:Yb3+/Eu3+ microcrystals are employed to compare and elucidate the site symmetry of the crystal field for Ln3+ ions. Note that the ratio of 5D07F1 and 5D07F2 transitions in NaYF4:Yb3+/Eu3+ microcrystals is smaller than that of the LiYF4:Yb3+/Eu3+ microcrystals, which indicates a much higher radiative relaxation rate in NaYF4 microcrystals than in LiYF4 microcrystals. The organic ligands of EDTA on the surface of microparticles affect the properties of luminescence through changing the nonradiative relaxation rate, resulting in the different R/G ratios in NaYF4 and LiYF4 microcrystals. This result can be further supported by the comparison between NaYF4 and LiYF4 microcrystals without EDTA added in the preparation process. The micro-sized luminescence materials usually present stronger upconversion luminescence because of their higher degree of crystallinity and less surface quenching centers. Thus, the Er3+ codoped NaYF4 and LiYF4 microcrystals exhibit strong green upconversion emission, which has potential applications in full-color displays and microelectronic devices.
      Corresponding author: Zheng Hai-Rong, hrzheng@snnu.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant Nos. 11304247, 11574190) and the Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars, China (Grant No. 2015KJXX-40).
    [1]

    Danielson E, Devenney M, Giaquinta D M, Golden J H, Haushalter R C, McFarland E W, Poojary D M, Reaves C M, Weinberg W H, Wu X D 1998 Science 279 837

    [2]

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese) [赵聪, 孟庆裕, 孙文军 2015 64 107803]

    [3]

    Shalav A, Richards B S, Trupke T, Krmer K W, Gdel H U 2005 Appl. Phys. Lett. 86 13503

    [4]

    Dong H, Sun L D, Yan C H 2015 Chem. Soc. Rev. 44 1608

    [5]

    Zheng W, Huang P, Tu D T, Ma E, Zhu H M, Chen X Y 2015 Chem. Soc. Rev. 44 1379

    [6]

    Wang L, Yan R, Huo Z Y, Wang L, Zeng J H, Bao J, Wang X, Peng Q, Li Y D 2005 Angew. Chem. Int. Ed. 44 6054

    [7]

    Lima M E, Lee Y L, Zhang Y, Chu J J H 2012 Biomaterials 33 1912

    [8]

    Gao D L, Zhang X Y, Gao W 2012 J. Appl. Phys. 111 033505

    [9]

    Gao D L, Zheng H R, Tian Y, Lei Y, Cui M, He E J, Zhang X S 2010 Sci. Sin. Phys, Mech. Astron. 40 287 (in Chinese) [高当丽, 郑海荣, 田宇, 雷瑜, 崔敏, 何恩节, 张喜生 2010 中国科学: 物理学 力学 天文学 40 287]

    [10]

    Fu J, Fu X, Wang C M, Yang X F, Zhuang J L, Zhang G G, Lai B Y, Wu M M, Wang J 2013 Eur. J. Inorg. Chem. 8 1269

    [11]

    Mai H X, Zhang Y W, Sun L D, Yan C H 2007 J. Phys. Chem. C 111 13721

    [12]

    Sun L D, Dong H, Zhang P Z, Yan C H 2015 Annu. Rev. Phys. Chem. 66 619

    [13]

    Zhang F, Wan Y, Yu T, Zhang F Q, Shi Y F, Xie S H, Li Y G, Xu L, Tu B, Zhao D Y 2007 Angew. Chem. Int. Ed. 46 7976

    [14]

    Ma D K, Yang D P, Cai P, Huang S M 2010 Cryst. Eng. Comm. 12 1650

    [15]

    Zhuang J L, Wang J, Yang X F, Williams I D, Zhang W, Zhang Q Y, Feng Z M, Yang Z M, Liang C L, Wu M M, Su Q 2009 Chem. Mater. 21 160

    [16]

    Sun Y J, Chen Y, Tian L J, Yu Y, Kong X G1, Zhao J W, Zhang H 2007 Nanotechnology 18 275609

    [17]

    Zhang F, Che R C, Li X M, Yao C, Yang J P, Shen D K, Hu P, Li W, Zhao D Y 2012 Nano. Lett. 12 2852

    [18]

    Wang Y, Tu L P, Zhao J W, Sun Y J, Kong X H, Zhang H 2009 J. Phys. Chem. C. 113 7164

    [19]

    Song J B, Ni Y R, Xu Z Z 2013 J. Mater. Sci. 48 4989

    [20]

    Gao W, Zheng H R, Han Q Y, He E J, Wang R B 2014 Cryst. Eng. Comm. 16 6697

    [21]

    Ma D K, Yang D P, Jiang J L, Cai P, Huang S M 2010 Cryst. Eng. Comm. 12 1650

    [22]

    Wang Q, Qu J B, Song Z G, Zhou D C, Xu X H 2014 Chin. Phys. B 23 064211

    [23]

    Yi J, Qu J B, Wang Y A, Zhou D C 2014 Chin. Phys. B 23 0104224

    [24]

    Liang Z Q, Zhao S L, Cun Y, Tian L J, Zhang J J, Xu Z 2015 Chin. Phys. B 24 037801

    [25]

    Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese) [杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成 2015 64 138101]

    [26]

    Dou Q Q, Zhang Y 2011 Langmuir 27 13236

    [27]

    Zhang X Y, Wang M Q, Ding J J, Deng J P, Ran C X, Yang Z 2014 Dalton Trans. 43 5453

    [28]

    Mahalingam V, Naccache R, Vetrone F, Capobianco J A 2009 Chem.-Eur. J. 15 9660

    [29]

    Mahalingam V, Vetrone F, Naccache R, Speghini A, Capobianco J 2009 Adv. Mater. 21 4025

    [30]

    Chen G Y, Ohulchanskyy T Y, Kachynski A, gren H, Prasa P N 2011 ACS Nano 5 4981

    [31]

    Gao W, Zheng H R, Li J, Gao D L, He E J, Tu Y X 2012 Sci. Sin. Phys. Mech. Astron. 42 1003 (in Chinese) [高 伟, 郑海荣, 李娇, 高当丽, 何恩节, 涂银勋2012 中国科学: 物理学 力学 天文学 42 1003]

    [32]

    Ding M Y, Lu C H, Cao L H, Huang W J, Nia Y R, Xu Z Z 2013 Cryst. Eng. Comm. 15 6015

    [33]

    Zhuang J L, Liang L F, Sung H H Y, Yang X F, Wu M M, Williams I D, Feng S H, Su Q 2007 Inorg. Chem. 46 5404

    [34]

    Judd B R 1962 Phys. Rev. 127 750

    [35]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [36]

    Kirby A F, Richardson F S 1983 J. Phys. Chem. 87 2544

    [37]

    Tsang W S, Yu W M, Mak C L, Tsui1 W L, Wong K H, Hui1et H K 2002 J. Appl. Phys. 91 1871

    [38]

    Chen X P, Zhang Q Y, Yang C H, Chen D D, Zhao C 2009 Spectrochim. Acta A 74 441

    [39]

    Lu C H, Huang W J, Ni Y R, Xu Z Z 2011 Mater. Res. Bull. 46 216

    [40]

    Gao W, Zheng H R, He E J, Lu Y, Gao F Q 2014 J. Lumin. 152 44

    [41]

    Zhao J W, Sun Y J, Kong X G, Tian L J, Wang Y, Tu L P, Zhao J L, Zhang H 2008 J. Chem. Phys. B 112 15666

  • [1]

    Danielson E, Devenney M, Giaquinta D M, Golden J H, Haushalter R C, McFarland E W, Poojary D M, Reaves C M, Weinberg W H, Wu X D 1998 Science 279 837

    [2]

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese) [赵聪, 孟庆裕, 孙文军 2015 64 107803]

    [3]

    Shalav A, Richards B S, Trupke T, Krmer K W, Gdel H U 2005 Appl. Phys. Lett. 86 13503

    [4]

    Dong H, Sun L D, Yan C H 2015 Chem. Soc. Rev. 44 1608

    [5]

    Zheng W, Huang P, Tu D T, Ma E, Zhu H M, Chen X Y 2015 Chem. Soc. Rev. 44 1379

    [6]

    Wang L, Yan R, Huo Z Y, Wang L, Zeng J H, Bao J, Wang X, Peng Q, Li Y D 2005 Angew. Chem. Int. Ed. 44 6054

    [7]

    Lima M E, Lee Y L, Zhang Y, Chu J J H 2012 Biomaterials 33 1912

    [8]

    Gao D L, Zhang X Y, Gao W 2012 J. Appl. Phys. 111 033505

    [9]

    Gao D L, Zheng H R, Tian Y, Lei Y, Cui M, He E J, Zhang X S 2010 Sci. Sin. Phys, Mech. Astron. 40 287 (in Chinese) [高当丽, 郑海荣, 田宇, 雷瑜, 崔敏, 何恩节, 张喜生 2010 中国科学: 物理学 力学 天文学 40 287]

    [10]

    Fu J, Fu X, Wang C M, Yang X F, Zhuang J L, Zhang G G, Lai B Y, Wu M M, Wang J 2013 Eur. J. Inorg. Chem. 8 1269

    [11]

    Mai H X, Zhang Y W, Sun L D, Yan C H 2007 J. Phys. Chem. C 111 13721

    [12]

    Sun L D, Dong H, Zhang P Z, Yan C H 2015 Annu. Rev. Phys. Chem. 66 619

    [13]

    Zhang F, Wan Y, Yu T, Zhang F Q, Shi Y F, Xie S H, Li Y G, Xu L, Tu B, Zhao D Y 2007 Angew. Chem. Int. Ed. 46 7976

    [14]

    Ma D K, Yang D P, Cai P, Huang S M 2010 Cryst. Eng. Comm. 12 1650

    [15]

    Zhuang J L, Wang J, Yang X F, Williams I D, Zhang W, Zhang Q Y, Feng Z M, Yang Z M, Liang C L, Wu M M, Su Q 2009 Chem. Mater. 21 160

    [16]

    Sun Y J, Chen Y, Tian L J, Yu Y, Kong X G1, Zhao J W, Zhang H 2007 Nanotechnology 18 275609

    [17]

    Zhang F, Che R C, Li X M, Yao C, Yang J P, Shen D K, Hu P, Li W, Zhao D Y 2012 Nano. Lett. 12 2852

    [18]

    Wang Y, Tu L P, Zhao J W, Sun Y J, Kong X H, Zhang H 2009 J. Phys. Chem. C. 113 7164

    [19]

    Song J B, Ni Y R, Xu Z Z 2013 J. Mater. Sci. 48 4989

    [20]

    Gao W, Zheng H R, Han Q Y, He E J, Wang R B 2014 Cryst. Eng. Comm. 16 6697

    [21]

    Ma D K, Yang D P, Jiang J L, Cai P, Huang S M 2010 Cryst. Eng. Comm. 12 1650

    [22]

    Wang Q, Qu J B, Song Z G, Zhou D C, Xu X H 2014 Chin. Phys. B 23 064211

    [23]

    Yi J, Qu J B, Wang Y A, Zhou D C 2014 Chin. Phys. B 23 0104224

    [24]

    Liang Z Q, Zhao S L, Cun Y, Tian L J, Zhang J J, Xu Z 2015 Chin. Phys. B 24 037801

    [25]

    Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese) [杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成 2015 64 138101]

    [26]

    Dou Q Q, Zhang Y 2011 Langmuir 27 13236

    [27]

    Zhang X Y, Wang M Q, Ding J J, Deng J P, Ran C X, Yang Z 2014 Dalton Trans. 43 5453

    [28]

    Mahalingam V, Naccache R, Vetrone F, Capobianco J A 2009 Chem.-Eur. J. 15 9660

    [29]

    Mahalingam V, Vetrone F, Naccache R, Speghini A, Capobianco J 2009 Adv. Mater. 21 4025

    [30]

    Chen G Y, Ohulchanskyy T Y, Kachynski A, gren H, Prasa P N 2011 ACS Nano 5 4981

    [31]

    Gao W, Zheng H R, Li J, Gao D L, He E J, Tu Y X 2012 Sci. Sin. Phys. Mech. Astron. 42 1003 (in Chinese) [高 伟, 郑海荣, 李娇, 高当丽, 何恩节, 涂银勋2012 中国科学: 物理学 力学 天文学 42 1003]

    [32]

    Ding M Y, Lu C H, Cao L H, Huang W J, Nia Y R, Xu Z Z 2013 Cryst. Eng. Comm. 15 6015

    [33]

    Zhuang J L, Liang L F, Sung H H Y, Yang X F, Wu M M, Williams I D, Feng S H, Su Q 2007 Inorg. Chem. 46 5404

    [34]

    Judd B R 1962 Phys. Rev. 127 750

    [35]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [36]

    Kirby A F, Richardson F S 1983 J. Phys. Chem. 87 2544

    [37]

    Tsang W S, Yu W M, Mak C L, Tsui1 W L, Wong K H, Hui1et H K 2002 J. Appl. Phys. 91 1871

    [38]

    Chen X P, Zhang Q Y, Yang C H, Chen D D, Zhao C 2009 Spectrochim. Acta A 74 441

    [39]

    Lu C H, Huang W J, Ni Y R, Xu Z Z 2011 Mater. Res. Bull. 46 216

    [40]

    Gao W, Zheng H R, He E J, Lu Y, Gao F Q 2014 J. Lumin. 152 44

    [41]

    Zhao J W, Sun Y J, Kong X G, Tian L J, Wang Y, Tu L P, Zhao J L, Zhang H 2008 J. Chem. Phys. B 112 15666

  • [1] Chen Bei, Wang Xiao-Yun, Liu Tao, Gao Ming, Wen Da-Dong, Deng Yong-He, Peng Ping. Symmetry and order of the kinetic heterogeneity in Pd-Si amorphous alloys. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241051
    [2] Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun. Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure. Acta Physica Sinica, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [3] Gao Wei, Zhang Zheng-Yu, Zhang Jing-Lei, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Yan Xue-Wen, Dong Jun. Constructing micro/nano-photonics barcodes based on micro-region upconversion emission spectrum of single core-shell microcrystal. Acta Physica Sinica, 2024, 73(18): 184202. doi: 10.7498/aps.73.20241015
    [4] Mu Li-Peng, Zhou Yao, Zhao Jian-Xing, Wang Li, Jiang Li, Zhou Jian-Hong. Enhancement of NaYF4:Yb3+/Er3+ up-conversion luminescence based on anodized alumina template. Acta Physica Sinica, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [5] Wen Da-Dong, Qi Qing-Hua, Huang Xin-Xin, Yi Zhou, Deng Yong-He, Tian Ze-An, Peng Ping. Heredity of clusters in liquid Ta rapid solidification process and its correlation with local symmetry. Acta Physica Sinica, 2023, 72(24): 246101. doi: 10.7498/aps.72.20231153
    [6] Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure. Acta Physica Sinica, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [7] Gao Wei, Sun Ze-Yu, Guo Li-Chun, Han Shan-Shan, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Wang Yong-Kai, Liu Ji-Hong, Dong Jun. Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure. Acta Physica Sinica, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [8] Chen Gui-Ling, Ma Jia-Jia, Sun Jia-Shi, Zhang Jin-Su, Li Xiang-Ping, Xu Sai, Zhang Xi-Zhen, Cheng Li-Hong, Chen Bao-Jiu. Preparation and upconversion luminescence properties of GdTaO4:RE/Yb(RE=Tm, Er) phosphor through experimental optimization design. Acta Physica Sinica, 2022, 71(16): 163301. doi: 10.7498/aps.71.20220474
    [9] Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211719
    [10] Gao Wei, Wang Bo-Yang, Sun Ze-Yu, Gao Lu, Zhang Chen-Xue, Han Qing-Yan, Dong Jun. Tuning upconversion emissions of Ho3+ through changing excitation conditions. Acta Physica Sinica, 2020, 69(3): 034207. doi: 10.7498/aps.69.20191333
    [11] Gao Wei, Wang Bo-Yang, Han Qing-Yan, Han Shan-Shan, Cheng Xiao-Tong, Zhang Chen-Xue, Sun Ze-Yu, Liu Lin, Yan Xue-Wen, Wang Yong-Kai, Dong Jun. Building vertical gold nanorod arrays to enhance upconversion luminescence of β-NaYF4: Yb3+/Er3+ nanocrystals. Acta Physica Sinica, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [12] Gao Wei, Dong Jun. Tuning upconversion fluorescence emission of -NaLuF4:Yb3+/Ho3+ nanocrystals through codoping Ce3+ ions. Acta Physica Sinica, 2017, 66(20): 204206. doi: 10.7498/aps.66.204206
    [13] Yang Jian-Zhi, Qiu Jian-Bei, Yang Zheng-Wen, Song Zhi-Guo, Yang Yong, Zhou Da-Cheng. Preparation and upconversion luminescence properties of Ba5SiO4Cl6: Yb3+, Er3+, Li+ phosphors. Acta Physica Sinica, 2015, 64(13): 138101. doi: 10.7498/aps.64.138101
    [14] Mao Xin-Guang, Wang Jun, Shen Jie. Upconversion luminescence properties in Er3+/Yb3+ codoped TiO2 films prepared by magnetron sputtering. Acta Physica Sinica, 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [15] He En-Jie, Zheng Hai-Rong, Gao Wei, Lu Ying, Li Jun-Na, Wei Ying, Wang Deng, Zhu Gang-Qiang. Mn2+ induced luminescence regulation and enhancement of Lu-based nanocrystals. Acta Physica Sinica, 2013, 62(23): 237803. doi: 10.7498/aps.62.237803
    [16] Sun Yu, Yang Chun-Hui, Jiang Zhao-Hua, Meng Xiang-Bin. Room temperature absorption spectra analysis of Er3+/Yb3+-doped Hydrothermal Epitaxial Layer on LiNbO3 and LiTaO3 Single Crystal Substrates. Acta Physica Sinica, 2012, 61(12): 127801. doi: 10.7498/aps.61.127801
    [17] Yuan Ning-Yi, Chen Xiao-Shuang, Ding Jian-Ning, He Ze-Jun, Li Feng, Lu Wei. Quantum effect and up-conversion luminescence of ZnO-SiO2 composite films synthesized by sol-gel technique. Acta Physica Sinica, 2009, 58(4): 2649-2653. doi: 10.7498/aps.58.2649
    [18] Jin Zhe, Nie Qiu-Hua, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang, Zhang Xiang-Hua. Energy transfer and upconversion luminescence of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite glasses. Acta Physica Sinica, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [19] Wen Lei, Zhang Li-Yan, Yang Jian-Hu, Wang Guo-Nian, Chen Wei, Hu Li- Li. Upconversion emission properties of Er3+ in fluoride (halide) phosphate tellurite glasses. Acta Physica Sinica, 2006, 55(3): 1486-1490. doi: 10.7498/aps.55.1486
    [20] Chen Xiao-Bo, Liu Kai, Zhang Jian, Wang Guo-Wen, Chen Chang-Tian. . Acta Physica Sinica, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
Metrics
  • Abstract views:  8860
  • PDF Downloads:  400
  • Cited By: 0
Publishing process
  • Received Date:  13 November 2015
  • Accepted Date:  10 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map