搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锰离子对镥基纳米晶体的荧光调控与增强

何恩节 郑海荣 高伟 鹿盈 李俊娜 魏映 王灯 朱刚强

引用本文:
Citation:

锰离子对镥基纳米晶体的荧光调控与增强

何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强

Mn2+ induced luminescence regulation and enhancement of Lu-based nanocrystals

He En-Jie, Zheng Hai-Rong, Gao Wei, Lu Ying, Li Jun-Na, Wei Ying, Wang Deng, Zhu Gang-Qiang
PDF
导出引用
  • 通过调控Mn2+的掺杂浓度,在镥基纳米晶体成功地实现了六方、四方混合相到纯四方相的相位转变,并详细讨论了其相变机理. 时域和频域光谱的分析表明,立方相Na5Lu9F32:40% Mn2+,20% Yb3+,2% Ln3+(Ln=Er3+,Ho3+)纳米晶体内的准纯红色荧光发射主要由Mn2+和Ln3+之间的两步能量转移引起. Mn2+掺杂后引起了发光离子附近局域对称性的降低,使得电偶极跃迁的辐射速率明显增加,进而导致了上转换、下转换荧光的极大增强. 该研究结果在生物荧光成像、太阳能电池效率的提高方面具备潜在的、广阔的应用前景.
    Transformation from Lu-based nanocrystals in hexagonal and cubic mixed phases to pure cubic phase was observed through adjusting the doping concentration of Mn2+. The mechanism for the phase transformation was discussed in detail. Studies on the time and frequency domain spectra indicated that the semi-pure red emissions in cubic Na5Lu9F32: 40% Mn2+, 20% Yb3+, 2% Ln3+ (Ln=Er3+, Ho3+) nanocrystals were caused by a two-step energy transfer between Mn2+ and Ln3+ ions. After incorporating of Mn2+ ions into the host lattices, the local symmetry around the luminescent ion was reduced, which induced the increase of radiative rates for transitions that were mainly contributed by electric dipole radiations. Considerable enhancements in upconversion and downconversion luminescence were accompanied. The result of the current study has great application potential in bioimaging and solar cells.
    • 基金项目: 国家自然科学基金(批准号:11174190)和安徽省高等学校省级自然科学研究项目(批准号:KJ2011Z082)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174190), and the Natural Science Foundation of University in Anhui Province, China (Grant No. KJ2011Z082).
    [1]

    van Sark W GJHM, de Wild J, Meijerink A, Schropp R EI 2013 Nanoscale Res. Lett. 8 81

    [2]

    Li Z Q, Li X D, Liu Q Q, Chen X H, Sun Z, Liu C, Ye X J, Huang S M 2012 Nanotechnology 23 025402

    [3]

    Liu Q, Sun Y, Yang T S, Feng W, Li C G, Li F Y 2011 J. Am. Chem. Soc. 133 17122

    [4]

    Sun Y, Peng J J, Feng W, Li F Y 2013 Theranostics 3 346

    [5]

    Psuja P, Hreniak D, Strek W 2007 J. Nanomater. 2007 81350

    [6]

    Krut’ko V A, Ryabova A V, Komova M G, Popov A V, Volkov V V, Kargin Y F, Loshchenov V B 2013 Inorg. Mater. 49 76

    [7]

    Zhou W L, Zhang Q Li, Gao J Y, Liu W P, Ding L H, Yin S T 2011 Chin. Phys. B 20 016101

    [8]

    He E J, Liu N, Zhang M L, Qin Y Fu, Guan B G, Li Y, Guo M 2012 Chin. Phys. B 21 073201

    [9]

    Zhang J C, Qin Q S, Yu M H, Sun J Y, Shi L R, Ma X L 2011 Chin. Phys. Lett. 28 027802

    [10]

    Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G 2010 Analyst 135 1839

    [11]

    Shi F, Wang J S, Zhai X S, Zhao D, Qin W P 2011 Crystengcomm 13 3782

    [12]

    Yu X F, Li M, Xie M Y, Chen L D, Li Y, Wang Q Q 2010 Nano Res. 3 51

    [13]

    Liu S, Chen G Y, Ohulchanskyy T Y, Swihart M T, Prasad P N 2013 Theranostics 3 275

    [14]

    Wang Q, Tan M C, Zhuo R, Kumar G A, Riman R E 2010 J. Nanosci. Nanotechnol. 10 1685

    [15]

    Krämer K W, Biner D, Frei G, Gdel H U, Hehlen M P, Lthi S R 2004 Chem. Mat. 16 1244

    [16]

    Cheng L, Yang K, Shao M M, Lee S T, Liu Z 2011 J. Phys. Chem. C 115 2686

    [17]

    Niu N, Yang P P, He F, Zhang X, Gai S L, Li C X, Lin J 2012 J. Mater. Chem. 22 10889

    [18]

    Boyer J C, Vetrone F, Cuccia L A, Capobianco J A 2006 J. Am. Chem. Soc. 128 7444

    [19]

    Chang J, Liu Y, Li J, Wu S L, Niu W B, Zhang S F 2013 J. Mater. Chem. C 1 1168

    [20]

    Wang J, Wang F, Wang C, Liu Z, Liu X G 2011 Angew. Chem. Int. Ed. 50 10369

    [21]

    Tian G, Gu Z J, Zhou L J, Yin W Y, Liu X X, Yan L, Jin S, Ren W L, Xing G M, Li S J, Zhao Y L 2012 Adv. Mater. 24 1226

    [22]

    Wang L L, Lan M, Liu Z Y, Qin G S, Wu C F, Wang X, Qin W P, Huang W, Huang L 2013 J. Mater. Chem. C 1 2485

    [23]

    He E J, Zheng H R, Gao W, Tu Y X, Lu Y, Li G A 2013 Mater. Res. Bull. 48 3505

    [24]

    Zhang F, Wan Y, Yu T, Zhang F Q, Shi Y F, Xie S H, Li Y G, Xu L, Tu B, Zhao D Y 2007 Angew. Chem. Int. Ed. 46 7976

    [25]

    Chen D Q, Yu Y L, Huang F, Huang P, Yang A P, Wang Y S 2010 J. Am. Chem. Soc. 132 9976

    [26]

    Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G 2010 Nature 463 1061

    [27]

    Pan L Y, He M, Ma J B, Tang W, Gao G, He R, Su H C, Cui D X 2013 Theranostics 3 210

    [28]

    Chen D Q, Yu Y L, Huang F, Wang Y S 2011 Chem. Commun. 47 2601

    [29]

    Pollnau M, Gamelin D R, Lthi S R, Gdel H U 2000 Phys. Rev. B 61 3337

    [30]

    Renero-Lecuna C, Martín-Rodríguez R, Valiente R 2011 Chem. Mater. 23 3442

    [31]

    Sell D D, Greene R L, White R M 1967 Phys. Rev. 158 489

    [32]

    Zeng J H, Xie T, Li Z H, Li Y D 2007 Cryst. Growth Des. 7 2774

    [33]

    Xie M Y, Peng X N, Fu X F, Zhang J J, Li G L, Yu X F 2009 Scr. Mater. 60 190

    [34]

    Ghosh P, Patra A 2008 J. Phys. Chem. C 112 19283

    [35]

    He E J, Zheng H R, Zhang Z L, Zhang X S, Xu L M, Fu Z X, Lei Y 2010 J. Nanosci. Nanotechnol. 10 1908

    [36]

    Wang F, Liu X G 2008 J. Am. Chem. Soc. 130 5642

    [37]

    Myint T, Gunawidjaja R, Eilers H 2011 Appl. Phys. Lett. 98 171906

    [38]

    Judd B R 1962 Phys. Rev. 127 750

    [39]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [40]

    Ebendorff-Heidepriema H, Ehrta D, Bettinellib, Speghinib A 1998 J. Non-Cryst. Solids 240 66

    [41]

    Weber M J 1967 Phys. Rev. 157 262

    [42]

    Carnall W T, Fields P R, Sarup R 1972 J. Chem. Phy. 57 43

  • [1]

    van Sark W GJHM, de Wild J, Meijerink A, Schropp R EI 2013 Nanoscale Res. Lett. 8 81

    [2]

    Li Z Q, Li X D, Liu Q Q, Chen X H, Sun Z, Liu C, Ye X J, Huang S M 2012 Nanotechnology 23 025402

    [3]

    Liu Q, Sun Y, Yang T S, Feng W, Li C G, Li F Y 2011 J. Am. Chem. Soc. 133 17122

    [4]

    Sun Y, Peng J J, Feng W, Li F Y 2013 Theranostics 3 346

    [5]

    Psuja P, Hreniak D, Strek W 2007 J. Nanomater. 2007 81350

    [6]

    Krut’ko V A, Ryabova A V, Komova M G, Popov A V, Volkov V V, Kargin Y F, Loshchenov V B 2013 Inorg. Mater. 49 76

    [7]

    Zhou W L, Zhang Q Li, Gao J Y, Liu W P, Ding L H, Yin S T 2011 Chin. Phys. B 20 016101

    [8]

    He E J, Liu N, Zhang M L, Qin Y Fu, Guan B G, Li Y, Guo M 2012 Chin. Phys. B 21 073201

    [9]

    Zhang J C, Qin Q S, Yu M H, Sun J Y, Shi L R, Ma X L 2011 Chin. Phys. Lett. 28 027802

    [10]

    Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G 2010 Analyst 135 1839

    [11]

    Shi F, Wang J S, Zhai X S, Zhao D, Qin W P 2011 Crystengcomm 13 3782

    [12]

    Yu X F, Li M, Xie M Y, Chen L D, Li Y, Wang Q Q 2010 Nano Res. 3 51

    [13]

    Liu S, Chen G Y, Ohulchanskyy T Y, Swihart M T, Prasad P N 2013 Theranostics 3 275

    [14]

    Wang Q, Tan M C, Zhuo R, Kumar G A, Riman R E 2010 J. Nanosci. Nanotechnol. 10 1685

    [15]

    Krämer K W, Biner D, Frei G, Gdel H U, Hehlen M P, Lthi S R 2004 Chem. Mat. 16 1244

    [16]

    Cheng L, Yang K, Shao M M, Lee S T, Liu Z 2011 J. Phys. Chem. C 115 2686

    [17]

    Niu N, Yang P P, He F, Zhang X, Gai S L, Li C X, Lin J 2012 J. Mater. Chem. 22 10889

    [18]

    Boyer J C, Vetrone F, Cuccia L A, Capobianco J A 2006 J. Am. Chem. Soc. 128 7444

    [19]

    Chang J, Liu Y, Li J, Wu S L, Niu W B, Zhang S F 2013 J. Mater. Chem. C 1 1168

    [20]

    Wang J, Wang F, Wang C, Liu Z, Liu X G 2011 Angew. Chem. Int. Ed. 50 10369

    [21]

    Tian G, Gu Z J, Zhou L J, Yin W Y, Liu X X, Yan L, Jin S, Ren W L, Xing G M, Li S J, Zhao Y L 2012 Adv. Mater. 24 1226

    [22]

    Wang L L, Lan M, Liu Z Y, Qin G S, Wu C F, Wang X, Qin W P, Huang W, Huang L 2013 J. Mater. Chem. C 1 2485

    [23]

    He E J, Zheng H R, Gao W, Tu Y X, Lu Y, Li G A 2013 Mater. Res. Bull. 48 3505

    [24]

    Zhang F, Wan Y, Yu T, Zhang F Q, Shi Y F, Xie S H, Li Y G, Xu L, Tu B, Zhao D Y 2007 Angew. Chem. Int. Ed. 46 7976

    [25]

    Chen D Q, Yu Y L, Huang F, Huang P, Yang A P, Wang Y S 2010 J. Am. Chem. Soc. 132 9976

    [26]

    Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G 2010 Nature 463 1061

    [27]

    Pan L Y, He M, Ma J B, Tang W, Gao G, He R, Su H C, Cui D X 2013 Theranostics 3 210

    [28]

    Chen D Q, Yu Y L, Huang F, Wang Y S 2011 Chem. Commun. 47 2601

    [29]

    Pollnau M, Gamelin D R, Lthi S R, Gdel H U 2000 Phys. Rev. B 61 3337

    [30]

    Renero-Lecuna C, Martín-Rodríguez R, Valiente R 2011 Chem. Mater. 23 3442

    [31]

    Sell D D, Greene R L, White R M 1967 Phys. Rev. 158 489

    [32]

    Zeng J H, Xie T, Li Z H, Li Y D 2007 Cryst. Growth Des. 7 2774

    [33]

    Xie M Y, Peng X N, Fu X F, Zhang J J, Li G L, Yu X F 2009 Scr. Mater. 60 190

    [34]

    Ghosh P, Patra A 2008 J. Phys. Chem. C 112 19283

    [35]

    He E J, Zheng H R, Zhang Z L, Zhang X S, Xu L M, Fu Z X, Lei Y 2010 J. Nanosci. Nanotechnol. 10 1908

    [36]

    Wang F, Liu X G 2008 J. Am. Chem. Soc. 130 5642

    [37]

    Myint T, Gunawidjaja R, Eilers H 2011 Appl. Phys. Lett. 98 171906

    [38]

    Judd B R 1962 Phys. Rev. 127 750

    [39]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [40]

    Ebendorff-Heidepriema H, Ehrta D, Bettinellib, Speghinib A 1998 J. Non-Cryst. Solids 240 66

    [41]

    Weber M J 1967 Phys. Rev. 157 262

    [42]

    Carnall W T, Fields P R, Sarup R 1972 J. Chem. Phy. 57 43

  • [1] 陈贝, 王小云, 刘涛, 高明, 文大东, 邓永和, 彭平. Pd-Si非晶合金动力学非均匀性的对称与有序.  , 2024, 73(24): . doi: 10.7498/aps.73.20241051
    [2] 文大东, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平. 液态Ta快凝过程中团簇的遗传及其与局域对称性的关联.  , 2023, 72(24): 246101. doi: 10.7498/aps.72.20231153
    [3] VasiliyPelenovich, 曾晓梅, 罗进宝, RakhimRakhimov, 左文彬, 张翔宇, 田灿鑫, 邹长伟, 付德君, 杨兵. 气体团簇离子束两步能量修形法的平坦化效应.  , 2021, 70(5): 053601. doi: 10.7498/aps.70.20201454
    [4] 李茂枝. 非晶合金及合金液体的局域五次对称性.  , 2017, 66(17): 176107. doi: 10.7498/aps.66.176107
    [5] 任益充, 范洪义. 两能级原子主方程和激光通道主方程的解之间的超对称性.  , 2016, 65(3): 030301. doi: 10.7498/aps.65.030301
    [6] 高伟, 董军, 王瑞博, 王朝晋, 郑海荣. Er3+/Yb3+共掺NaYF4/LiYF4微米晶体的上转换荧光特性.  , 2016, 65(8): 084205. doi: 10.7498/aps.65.084205
    [7] 周年杰, 黄伟其, 苗信建, 王刚, 董泰阁, 黄忠梅, 尹君. 量子受限效应和对称性效应对硅光子晶体禁带的影响.  , 2015, 64(6): 064208. doi: 10.7498/aps.64.064208
    [8] 梁文耀, 张玉霞, 陈武喝. 低对称性光子晶体超宽带全角自准直传输的机理研究.  , 2015, 64(6): 064209. doi: 10.7498/aps.64.064209
    [9] 张兆慧, 李海鹏, 韩奎. 纳米摩擦中极性有机分子超薄膜的结构、对称性及能量机理.  , 2013, 62(15): 158701. doi: 10.7498/aps.62.158701
    [10] 洪武, 梁琳, 余岳辉. 两步式放电改善反向开关晶体管开通特性研究.  , 2012, 61(5): 058501. doi: 10.7498/aps.61.058501
    [11] 刘 峰, 张家骅, 吕少哲, 王笑军. SrAl12O19:Pr3+中4f2→4f2电偶极跃迁强度参量化.  , 2006, 55(11): 6020-6024. doi: 10.7498/aps.55.6020
    [12] 吴惠彬, 梅凤翔. 关于Noether对称性的两种理解.  , 2006, 55(8): 3825-3828. doi: 10.7498/aps.55.3825
    [13] 牟致栋, 魏琦瑛, 陈涤缨. RhXⅢ,PdXⅣ和AgXV离子4s24p3—4s24p25s跃迁的扩展分析.  , 2006, 55(8): 4070-4077. doi: 10.7498/aps.55.4070
    [14] 方建会, 廖永潘, 彭 勇. 相空间中力学系统的两类Mei对称性及守恒量.  , 2005, 54(2): 500-503. doi: 10.7498/aps.54.500
    [15] 王正平, 滕 冰, 杜晨林, 许心光, 傅 琨, 许贵宝, 王继扬, 邵宗书. 低对称性非线性光学晶体BIBO的倍频性质.  , 2003, 52(9): 2176-2184. doi: 10.7498/aps.52.2176
    [16] 罗 明, 毕志毅, 陈扬骎, 马龙生. 边带非对称性对调制转移光谱中心频率的影响.  , 1999, 48(10): 1845-1851. doi: 10.7498/aps.48.1845
    [17] 贾春生, 蒋效卫, 王孝国, 杨秋波. 量子系统的能量本征值在超对称性、形状不变性框架下的计算.  , 1997, 46(1): 12-19. doi: 10.7498/aps.46.12
    [18] 霍崇儒, C. C. WANG, J. L. BOMBACK, J. V. JAMES. 反射三次谐波产生与晶体对称性.  , 1987, 36(11): 1416-1426. doi: 10.7498/aps.36.1416
    [19] 吴国祯. 分子晶体中偶极矩作用和声子的对称性.  , 1980, 29(6): 803-806. doi: 10.7498/aps.29.803
    [20] 王国文. 晶体的单电子能级对称性与声子对称性的决定方法.  , 1966, 22(2): 197-204. doi: 10.7498/aps.22.197
计量
  • 文章访问数:  5767
  • PDF下载量:  699
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-04
  • 修回日期:  2013-08-25
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map