搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态Ta快凝过程中团簇的遗传及其与局域对称性的关联

文大东 祁青华 黄欣欣 易洲 邓永和 田泽安 彭平

引用本文:
Citation:

液态Ta快凝过程中团簇的遗传及其与局域对称性的关联

文大东, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平

Heredity of clusters in liquid Ta rapid solidification process and its correlation with local symmetry

Wen Da-Dong, Qi Qing-Hua, Huang Xin-Xin, Yi Zhou, Deng Yong-He, Tian Ze-An, Peng Ping
PDF
HTML
导出引用
  • 金属玻璃是液态金属在某种程度上的“冻结”, 探明液态金属的结构特征及其在快凝过程中的演化特性, 有助于理解玻璃转变和玻璃形成能力的微结构机制. 为此, 本文采用分子动力学, 模拟研究了液态金属Ta的快凝过程. 并用双体分布函数、最大标准团簇、遗传跟踪等方法, 对快凝Ta的微结构特征及其演化特性进行了表征和分析. 结果表明, 快凝金属Ta的原子组态是各种Kasper团簇及变形结构, 其中占比最高的是Z13 Kasper团簇. 连续遗传起始温度和阶段遗传分数均可用来表征团簇结构遗传能力的大小. 最大标准团簇的对称性可以采用局域对称性参数(LSP)来定量表征, 局域五次对称参数(LSP5)越大其遗传能力越强. 各类团簇在能量区间出现的频率均服从高斯分布, 其平均原子势能期望值($ {E}_{{\mathrm{e}}{\mathrm{x}}{\mathrm{p}}}^{j} $)与LSP呈近似线性关系, 且$ {E}_{{\mathrm{e}}{\mathrm{x}}{\mathrm{p}}}^{j} $随LSP5的增大而降低. 高的局域五次对称性降低了团簇的平均原子势能, 从而增强了这类团簇的结构遗传能力.
    Metallic glass (MG) has received intensive attention in the fields of amorphous physics and materials science, owing to its excellent mechanical properties, good corrosion resistance, and large elastic deformation limit. Comparing with traditional oxide glass, the limited glass-forming ability (GFA) seriously restricts the application of MG in engineering. Therefore, the GFA has been a hot scientific issue in the field of amorphous material research. Recently, scientists have fully realized that GFA is closely related to the local atomic structure in liquid as well as its evolution features. Since the MG is called the “freezing” liquid, exploring the correlation of local atomic structures between liquid phase and solid phase under rapid solidification conditions is helpful in understanding the microstructural mechanism of GFA. Therefore, the rapid solidification process of liquid Ta is investigated via molecular dynamics simulation. The pair correlation function (PDF), the largest standard cluster (LSC), and the reverse atomic trajectory tracking methods are used to characterize and analyze the microstructure and its evolution during the rapid solicitation of liquid Ta. The results show that the local atomic configurations of the rapidly solidified Ta are various Kasper clusters as well as their distorted configurations, among of which [1/444, 10/555, 2/666] deformed icosahedron (or Z13 cluster) accounts for the highest proportion. The trend of hereditary ability of clusters revealed by the onset temperature of continuous heredity is consistent well with that by the fraction of staged heredity. The geometric symmetry of clusters can be quantitatively characterized by using the local symmetry parameter (LSP). The hereditary ability of clusters is closely related to their LSP. The local five-fold symmetry is beneficial to enhancing hereditary ability, while local four- and six-fold symmetry are disadvantageous for that. The probability of clusters with the same LSC index emerging in the energy range follows the Gaussian distribution, and the expected average atomic potential energy $ {E}_{\rm exp}^{j} $ is almost linearly related to the LSP, and $ {E}_{\rm exp}^{j} $ decreases with the increase of LSP5. The high local five-fold symmetry reduces the average atomic potential energy of LSC, thereby enhancing its configurational heredity. These findings have guiding significance in improving GFA through regulating the local symmetry of liquid monatomic metals or alloys.
      通信作者: 文大东, ddwen@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51701071)、湖南省自然科学基金(批准号: 2021JJ30179, 2018JJ3100) 和湖南省教育厅科研项目(批准号: 22A0524)资助的课题.
      Corresponding author: Wen Da-Dong, ddwen@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51701071), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2021JJ30179, 2018JJ3100), and the Education Department Project of Hunan Province, China (Grant No. 22A0524).
    [1]

    吴渊, 刘雄军, 吕昭平 2022 物理 51 691Google Scholar

    Wu Y, Liu X J, Lu Z P 2022 Physics 51 691Google Scholar

    [2]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [3]

    汪卫华 2022 自然杂志 44 173Google Scholar

    Wang W H 2022 Chin. J. Nat. 44 173Google Scholar

    [4]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [5]

    Louzguine-Luzgin D V, Miracle D B, Inoue A 2008 Adv. Eng. Mater. 10 1008Google Scholar

    [6]

    Wei G Y, Cui J Z, Wang W, Guo X X, Ren J L, Wang W H 2022 Phys. Rev. Mater. 6 055601Google Scholar

    [7]

    李金富, 李伟 2022 金属学报 58 457Google Scholar

    Li J F, Li W 2022 Acta Metall. Sin. 58 457Google Scholar

    [8]

    Wang F R, Zhang H P, Li M Z 2018 J. Alloys Compd. 763 392Google Scholar

    [9]

    Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504Google Scholar

    [10]

    Zhang F, Ji M, Fang X W, Sun Y, Wang C Z, Mendelev M I, Kramer M J, Napolitanoa R E, Ho K M 2014 Acta Mater. 81 337Google Scholar

    [11]

    高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平 2020 69 046401Google Scholar

    Gao M, Deng Y H, Wen D D, Tian Z A, Zhao H P, Peng P 2020 Acta Phys. Sin. 69 046401Google Scholar

    [12]

    Sandor M T, Ke H B, Wang W H, Wu Y 2013 J. Phys. Condens. Matter. 25 165701Google Scholar

    [13]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503Google Scholar

    [14]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Nat. Commun. 6 8310Google Scholar

    [15]

    李茂枝 2017 66 176107Google Scholar

    Li M Z 2017 Acta Phys. Sin. 66 176107Google Scholar

    [16]

    Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501Google Scholar

    [17]

    Wen D D, Deng Y H, Gao M, Tian Z A 2021 Chin. Phys. B 30 076101Google Scholar

    [18]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Li W, Liu R S 2015 J. Non-Cryst. Solids 427 199Google Scholar

    [19]

    Chu W, Shang J X, Yin K B, Ren N N, Hu L N, Zhao Y B, Dong B S 2020 Acta Mater. 196 690Google Scholar

    [20]

    Zhai X T, Li X, Wang Z, Hu L N, Song K K, Tian Z A, Yue Y Z 2022 Acta Mater. 239 118246Google Scholar

    [21]

    Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X 2014 Nature 512 177Google Scholar

    [22]

    Zhao R, Jiang H Y, Luo P, Sun Y T, Li Z A, Wu W W, Shen L Q, Liu M, Zhao S F, Wen P, Zhang Q H, Gu L, Bai H Y, Wang W H 2020 Appl. Phys. Lett. 117 131903Google Scholar

    [23]

    Zhang J C, Chen C, Pei Q X, Wan Q, Zhang W X, Sha Z D 2015 Mater. Des. 77 1Google Scholar

    [24]

    Khmich A, Sbiaai K, Hasnaoui A 2019 J. Non-Cryst. Solids 510 81Google Scholar

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [26]

    https://sites.google.com/site/eampotentials/Ta [2020-5-4

    [27]

    Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177Google Scholar

    [28]

    Wu Z W, Li M Z, Wang W H, Song W J, Liu K X 2013 J. Chem. Phys. 138 074502Google Scholar

    [29]

    Zhang Y, Mattern N, Eckert J 2012 J. Appl. Phys. 111 053520Google Scholar

    [30]

    王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军 2018 金属学报 54 204Google Scholar

    Wang J C, Guo C, Zhang Q, Tang S, Li J J, Wang Z J 2018 Acta Metall. Sin. 54 204Google Scholar

    [31]

    Wen D D, Deng Y H, Dai X Y, Tian Z A, Peng P 2019 Philos. Mag. 99 2904Google Scholar

    [32]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001Google Scholar

    [33]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950Google Scholar

    [34]

    Wen D D, Deng Y H, Su Y F, Tian Z A 2020 Mod. Phys. Lett. B 34 2050316.Google Scholar

    [35]

    Deng Y H, Wen D D, Li Y, Peng P 2018 Philos. Mag. 20 1Google Scholar

    [36]

    Ostwald W 1897 Z. Phys. Chem. 22 289Google Scholar

  • 图 1  液态Ta快凝过程中平均原子势能Esys随温度T的变化

    Fig. 1.  Temperature (T ) dependence of potential energy (Esys) per atom during the rapid solidification of liquid Ta.

    图 2  金属Ta 系统在不同温度下的双体分布函数g(r) (a) MD模拟与AIMD计算结果[23]的比较(T = 300 K), 内插图是MD模拟结构因子S(q)与实验值[22]的比较; (b) g(r)曲线随温度T的演化

    Fig. 2.  The g(r) curves of metal Ta system at several selected temperatures: (a) Comparison of g(r) for Ta metallic glass at 300 K between present molecular dynamics (MD) simulation and ab-initio MD (AIMD) result[23]; insert is the comparison of S(q) for Ta metallic glass at 300 K between present MD simulation and experimental values[22]; (b) the evolution of g(r) curves with temperature (T ).

    图 3  基本原子团簇表征方法和Ta金属玻璃中典型的团簇 (a) 最大标准团簇(LSC) (小球上的编码用于标定原子的局域结构); (b) 共有近邻子团簇(CNS); (c)共有近邻(CNN); (d) Ta金属玻璃中典型LSC结构示意图. 橙色球代表团簇的中心原子; 绿色、灰色、粉色分别代表团簇中具有四次、五次和六次局域对称环境的壳层原子

    Fig. 3.  Characterization of basic atomic clusters and schematic diagram of typical clusters in Ta metal glass: (a) Topology of largest standard cluster (LSC) (The encoding on the ball is used to identify the local structure of atoms); (b) a common neighbor subcluster (CNS); (c) common near neighbor (CNN); (d) schematic diagram of typical LSC structure in Ta metal glass. The orange sphere represents the central atom of the cluster; green, gray, and pink respectively represent the coordination atoms in the cluster with fourth, fifth, and sixth local symmetric environments.

    图 4  Ta金属玻璃中典型LSC的数目分布(a)及其在系统中的占比随温度的演化(b)

    Fig. 4.  Distribution of typical LSC in Ta metallic glass (a) and their evolution with temperature (b).

    图 5  液态Ta快凝过程中典型SRO和MRO的遗传与演化示意图 (a) Z14 SRO的遗传; (b) 由Z12 形成的MRO的遗传与演化. 深蓝色与橙色球分别代表团簇中经遗传得到的壳层与中心原子, 浅蓝色与浅橙色分别代表团簇在演化过程中新增的壳层与中心原子, nNI分别表示MRO中的原子总数与中心数目

    Fig. 5.  Schematic diagram of evolution and heredity for a short-range order (SRO) and a typical medium-range order (MRO) in the rapid solidification of liquid Ta: (a) Heredity of Z14 SRO; (b) heredity and evolution of an MRO formed by Z12 basic cluster. The dark blue and orange spheres respectively represent the inherited shell and center atoms in the cluster; while the light blue and light orange represent the newly added shell and center atoms in the evolution of cluster, respectively. n and NI represent the total number of atoms and the number of cores in MRO, respectively.

    图 6  Ta快凝过程中典型团簇的遗传起始温度与阶段遗传分数 (a)遗传起始温度Tonset; (b)阶段遗传分数

    Fig. 6.  Onset temperature as well as the fraction of staged heredity of typical clusters during rapid solidification of liquid Ta: (a) The onset temperature Tonset of typical LSCs; (b) the fraction of staged heredity for different LSCs.

    图 7  典型LSC遗传特性与局域对称性参数LSP的关系 (a)遗传起始温度Tonset与LSP的关系; (b)阶段遗传分数fSH与LSP的关系

    Fig. 7.  Correlation of LSP with the hereditary characteristics of typical LSC: (a) The relationship between Tonset and LSP; (b) correlation of LSP with fSH.

    图 8  快凝Ta中典型LSC的平均原子势能 (a) Ta金属玻璃(T = 300 K)中Z12与Z13出现的频率$ P_j({E}_{{\mathrm{C}}} )$随团簇平均原子势能EC的分布; (b)不同温度下典型LSC平均原子势能期望值$ {E}_{{\mathrm{e}}{\mathrm{x}}{\mathrm{p}}}^{j} $

    Fig. 8.  Potential energy per atom of typical LSC in rapidly solidified metal Ta: (a) The distribution of the fraction of Z12 and Z13 in Ta metallic glass with potential energy per atom $ {E}_{{\mathrm{C}}} $ in LCS (T = 300 K); (b) expected potential energy per atom, $ {E}_{{\mathrm{e}}{\mathrm{x}}{\mathrm{p}}}^{j} $, for typical LSC at different temperatures

    图 9  $ {E}_{{\mathrm{e}}{\mathrm{x}}{\mathrm{p}}}^{j} $与局域对称性参数LSP的关系

    Fig. 9.  Relationship between $ {E}_{{\mathrm{e}}{\mathrm{x}}{\mathrm{p}}}^{j} $ and the local symmetry parameter LSP.

    表 1  Ta金属玻璃中典型LSC的局域对称性参数LSP

    Table 1.  Local symmetry parameters (LSP) of typical LSC in Ta metal glass.

    LSCLSP4LSP5LSP6
    [12/555] (Z12)01.00000
    [1/444, 10/555, 2/666] (Z13)0.07690.76920.1538
    [3/444, 6/555, 4/666]0.23080.46150.3076
    [12/555, 2/666] (Z14)00.85710.1429
    [1/444, 10/555, 3/666]0.07140.71430.2143
    [2/444, 8/555, 4/666]0.14290.57140.2857
    [3/444, 6/555, 5/666]0.21420.42860.3571
    [12/555, 3/666] (Z15)00.80000.2000
    [1/444, 10/555, 4/666]0.06670.66670.2667
    [2/444, 8/555, 5/666]0.13330.53330.3333
    下载: 导出CSV
    Baidu
  • [1]

    吴渊, 刘雄军, 吕昭平 2022 物理 51 691Google Scholar

    Wu Y, Liu X J, Lu Z P 2022 Physics 51 691Google Scholar

    [2]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [3]

    汪卫华 2022 自然杂志 44 173Google Scholar

    Wang W H 2022 Chin. J. Nat. 44 173Google Scholar

    [4]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [5]

    Louzguine-Luzgin D V, Miracle D B, Inoue A 2008 Adv. Eng. Mater. 10 1008Google Scholar

    [6]

    Wei G Y, Cui J Z, Wang W, Guo X X, Ren J L, Wang W H 2022 Phys. Rev. Mater. 6 055601Google Scholar

    [7]

    李金富, 李伟 2022 金属学报 58 457Google Scholar

    Li J F, Li W 2022 Acta Metall. Sin. 58 457Google Scholar

    [8]

    Wang F R, Zhang H P, Li M Z 2018 J. Alloys Compd. 763 392Google Scholar

    [9]

    Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504Google Scholar

    [10]

    Zhang F, Ji M, Fang X W, Sun Y, Wang C Z, Mendelev M I, Kramer M J, Napolitanoa R E, Ho K M 2014 Acta Mater. 81 337Google Scholar

    [11]

    高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平 2020 69 046401Google Scholar

    Gao M, Deng Y H, Wen D D, Tian Z A, Zhao H P, Peng P 2020 Acta Phys. Sin. 69 046401Google Scholar

    [12]

    Sandor M T, Ke H B, Wang W H, Wu Y 2013 J. Phys. Condens. Matter. 25 165701Google Scholar

    [13]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503Google Scholar

    [14]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Nat. Commun. 6 8310Google Scholar

    [15]

    李茂枝 2017 66 176107Google Scholar

    Li M Z 2017 Acta Phys. Sin. 66 176107Google Scholar

    [16]

    Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501Google Scholar

    [17]

    Wen D D, Deng Y H, Gao M, Tian Z A 2021 Chin. Phys. B 30 076101Google Scholar

    [18]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Li W, Liu R S 2015 J. Non-Cryst. Solids 427 199Google Scholar

    [19]

    Chu W, Shang J X, Yin K B, Ren N N, Hu L N, Zhao Y B, Dong B S 2020 Acta Mater. 196 690Google Scholar

    [20]

    Zhai X T, Li X, Wang Z, Hu L N, Song K K, Tian Z A, Yue Y Z 2022 Acta Mater. 239 118246Google Scholar

    [21]

    Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X 2014 Nature 512 177Google Scholar

    [22]

    Zhao R, Jiang H Y, Luo P, Sun Y T, Li Z A, Wu W W, Shen L Q, Liu M, Zhao S F, Wen P, Zhang Q H, Gu L, Bai H Y, Wang W H 2020 Appl. Phys. Lett. 117 131903Google Scholar

    [23]

    Zhang J C, Chen C, Pei Q X, Wan Q, Zhang W X, Sha Z D 2015 Mater. Des. 77 1Google Scholar

    [24]

    Khmich A, Sbiaai K, Hasnaoui A 2019 J. Non-Cryst. Solids 510 81Google Scholar

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [26]

    https://sites.google.com/site/eampotentials/Ta [2020-5-4

    [27]

    Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177Google Scholar

    [28]

    Wu Z W, Li M Z, Wang W H, Song W J, Liu K X 2013 J. Chem. Phys. 138 074502Google Scholar

    [29]

    Zhang Y, Mattern N, Eckert J 2012 J. Appl. Phys. 111 053520Google Scholar

    [30]

    王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军 2018 金属学报 54 204Google Scholar

    Wang J C, Guo C, Zhang Q, Tang S, Li J J, Wang Z J 2018 Acta Metall. Sin. 54 204Google Scholar

    [31]

    Wen D D, Deng Y H, Dai X Y, Tian Z A, Peng P 2019 Philos. Mag. 99 2904Google Scholar

    [32]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001Google Scholar

    [33]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950Google Scholar

    [34]

    Wen D D, Deng Y H, Su Y F, Tian Z A 2020 Mod. Phys. Lett. B 34 2050316.Google Scholar

    [35]

    Deng Y H, Wen D D, Li Y, Peng P 2018 Philos. Mag. 20 1Google Scholar

    [36]

    Ostwald W 1897 Z. Phys. Chem. 22 289Google Scholar

  • [1] 陈贝, 邓永和, 祁青华, 高明, 文大东, 王小云, 彭平. 高压下快凝Pd82Si18非晶合金中二十面体结构分析.  , 2024, 73(2): 026101. doi: 10.7498/aps.73.20231101
    [2] 邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓. 不凝性气体对纳米通道内水分子流动传热影响的分子动力学模拟.  , 2024, 73(9): 094701. doi: 10.7498/aps.73.20240192
    [3] 陈贝, 王小云, 刘涛, 高明, 文大东, 邓永和, 彭平. Pd-Si非晶合金动力学非均匀性的对称与有序.  , 2024, 73(24): . doi: 10.7498/aps.73.20241051
    [4] 蒋元祺. 难熔金属钒熔化行为的局域原子结构模拟与分析.  , 2020, 69(20): 203601. doi: 10.7498/aps.69.20200185
    [5] 高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平. 快凝Pd82Si18合金原子团簇的演化特性及遗传机制.  , 2020, 69(4): 046401. doi: 10.7498/aps.69.20190970
    [6] 郑治秀, 张林. Fe基体中包含Cu团簇的Fe-Cu二元体系在升温过程中结构变化的原子尺度计算.  , 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
    [7] 姚建刚, 宫宝安, 王渊旭. NO在Yn(n=1–12)团簇表面的解离性吸附.  , 2013, 62(24): 243601. doi: 10.7498/aps.62.243601
    [8] 李春丽, 段海明, 买力坦, 开来木. Aln(n=13–32)团簇熔化行为的分子动力学模拟研究.  , 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [9] 文大东, 彭平, 蒋元祺, 田泽安, 刘让苏. 快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪.  , 2013, 62(19): 196101. doi: 10.7498/aps.62.196101
    [10] 冯成义, 程新路, 张红. 仲氢及正氘团簇的量子定域和超流动性研究.  , 2011, 60(1): 013602. doi: 10.7498/aps.60.013602
    [11] 韩小静, 王音, 林正喆, 张文献, 庄军, 宁西京. 团簇异构体生长概率的理论预测.  , 2010, 59(5): 3445-3449. doi: 10.7498/aps.59.3445
    [12] 樊沁娜, 李蔚, 张林. 熔融Cu57团簇在急冷过程中弛豫和局域结构转变的分子动力学研究.  , 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [13] 张林, 徐送宁, 李蔚, 孙海霞, 张彩碚. 小尺寸铜团簇冷却与并合过程中结构变化的原子尺度研究.  , 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [14] 赵骞, 张林, 祁阳, 张宗宁. 低温下Cu13团簇负载于Cu(001)表面上结构变化的分子动力学研究.  , 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [15] 张宗宁, 刘美林, 李蔚, 耿长建, 赵骞, 张林. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟.  , 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [16] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究.  , 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [17] 徐送宁, 张林, 张彩碚, 祁阳. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟.  , 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [18] 周诗韵, 王 音, 宁西京. 一种寻找团簇异构体的准动力学方法.  , 2008, 57(1): 387-391. doi: 10.7498/aps.57.387
    [19] 袁 喆, 何春龙, 王晓路, 刘海涛, 李家明. 团簇的第一原理分子动力学计算研究:价键优选法.  , 2005, 54(2): 628-635. doi: 10.7498/aps.54.628
    [20] 刘建胜, 李儒新, 朱频频, 徐至展, 刘晶儒. 大尺寸团簇在超短超强激光场中的动力学行为.  , 2001, 50(6): 1121-1127. doi: 10.7498/aps.50.1121
计量
  • 文章访问数:  2306
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 修回日期:  2023-09-02
  • 上网日期:  2023-09-18
  • 刊出日期:  2023-12-20

/

返回文章
返回
Baidu
map