搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射

高伟 骆一帆 邢宇 丁鹏 陈斌辉 韩庆艳 严学文 张成云 董军

引用本文:
Citation:

构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射

高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军

Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure

Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun
PDF
HTML
导出引用
  • 构建核壳结构已被广泛应用于增强及调控稀土掺杂微/纳材料的发光性能. 本工作旨在通过构建NaErF4@NaYbF4:2%Er3+纳米核壳晶体, 实现了Er3+离子的红光发射增强. 实验结果表明: 当NaErF4纳米晶体包覆NaYbF4:2%Er3+活性壳时, 在980 nm激光激发下, 其Er3+离子的红光发射强度相比NaErF4@NaYbF4核壳晶体增强了1.4倍, 且红绿比由5.4提高至6.5. 同时, 当NaErF4@ NaYbF4:2%Er3+ 核壳晶体再次包覆NaYF4惰性壳及引入微量Tm3+离子时, 其Er3+离子的红光发射强度相比于NaErF4@NaYbF4核壳结构分别增强了23.2和40.3倍, 且红绿比分别提高到7.5和10.2. 基于不同核壳晶体的光谱特性、离子间能量传递过程及其发光动力学, 对不同核壳晶体中Er3+离子的红光增强机理进行了讨论. 结果表明Er3+离子的红光增强主要借助高浓度Yb3+离子的双向能量传递及Tm3+离子的能量俘获效应所致, 同时NaYF4惰性壳的包覆也有效降低纳米晶体表面猝灭效应. 本文所构建的具有高效红光发射的NaErF4@NaYbF4:2%Er3+@NaYF4核壳纳米晶体在多彩防伪、 显示及生物成像等领域中具有巨大的应用潜力.
    Building core-shell structures are widely used to enhance and regulate the luminescence properties of rare-earth-doped micro/nano materials. In this work, a variety of different NaErF4 core-shell and core-shell-shell nanocrystals are successfully constructed based on high temperature co-precipitation method by epitaxial growth technology. The upconversion red emission intensities of Er3+ ions in different core-shell structures are effectively enhanced by regulating their structures and doping ions. The experimental structures show that the constructed core-shell nanocrystals each have a hexagonal phase structure, and core-shell structure of about 40 nm. In the near infrared 980 nm laser excitation, the NaErF4 core-shell nanocrystal shows a strong single-band red emission. And the single-band red emission intensity of Er3+ ions is enhanced through constructing the NaErF4@NaYbF4:2%Er3+ core-shell structure. The experimental results show that red emission intensity of Er3+ ions is about 1.4 times higher than that of the NaErF4@NaYbF4 core-shell structure by constructing the NaErF4@NaYbF4:2%Er3+ core-shell structures under 980 nm excitation, and its red/green emission intensity ratio increases from 5.4 to 6.5. Meanwhile, when NaErF4@NaYbF4:2%Er3+ core-shell structure recoats the NaYF4 inert shell and is added with a small quantity of Tm3+ ions, their red emission intensities of Er3+ ions are 23.2 times and 40.3 times that of NaErF4@NaYbF4 core-shell structures, and their red/green emission intensity ratios reach 7.5 and 10.2, respectively. The red emission enhancement of Er3+ ions is mainly caused by bidirectional energy transfer process of high excitation energy of Yb3+ ions and energy trapping center of Tm3+ ions which effectively change the density of population of luminescent energy levels of Er3+ ions. Furthermore, the coated NaYF4 inert shell also effectively weakens the surface quenching effect of nanocrystals. The mechanisms of red enhancement in different core-shell structures are discussed based on the spectral properties, the process of interion energy transfer, and luminescence kinetics. The constructed NaErF4@NaYbF4:2%Er3+@NaYF4 core-shell structures with high-efficiency red emission in this work have great potential applications in the fields of colorful anti-counterfeiting, display and biological imaging.
      通信作者: 高伟, gaowei@xupt.edu.cn ; 董军, dongjun@xupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12274341, 12004304, 12104366)、陕西省重点研发计划(批准号: 2022SF-333)、陕西省自然基金重点项目(批准号: 2022JZ-05)、陕西省自然科学基金青年项目(批准号: 2022JQ-041)、陕西省教育厅服务地方专项计划 (批准号: 22JC-057)和西安邮电大学创新基金(批准号: CXJJY2022033)资助的课题.
      Corresponding author: Gao Wei, gaowei@xupt.edu.cn ; Dong Jun, dongjun@xupt.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant Nos. 12274341, 12004304, 12104366 ), the Key R & D Plan Program of Shaanxi Province, China (Grant No. 2022SF-333), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2022JZ-05), the Natural Science Foundation Youth Program of Shaanxi Province, China (Grant No. 2022JQ-041), the Education Department Service Local Special Program of Shaanxi Province, China (Grant No. 22JC057), and the Innovation Fund Project of Xi’an University of Posts and Telecommunications, China (Grant No. CXJJY2022033).
    [1]

    Alkahtani M, Alsofyani N, Alfahd A, Almuqhim A A, Almuqhim F A, Alshehri A A, Qasem H, Hemmer P R 2021 Nanomaterials 11 284Google Scholar

    [2]

    Sun T Y, Li Y H, Ho W L, Zhu Q, Chen X, Jin L M, Zhu H M, Huang B L, Lin J, Little B E, Chu S T, Wang F 2019 Nat. Commun. 10 1811Google Scholar

    [3]

    Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G 2011 Nat. Mater. 10 968Google Scholar

    [4]

    Wang Y B, Lei L, Ye R G, Jia G H, Hua Y J, Deng D G, Xu S Q 2021 ACS Appl. Mater. Interfaces 13 23951Google Scholar

    [5]

    Bao H Q, Wang W, Li X, Liu X M, Zhang L, Yan X, Wang Y H, Wang C G, Jia X T, Sun P, Kong X G, Zhnag H, Lu G Y 2022 Adv. Optical Mater. 10 2101702Google Scholar

    [6]

    严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟 2019 68 174204Google Scholar

    Yan X W, Wang C J, Wang B Y, Sun Z Y, Zhang C X, Han Q Y, Qi J X, Dong J, Gao W 2019 Acta Phys. Sin. 68 174204Google Scholar

    [7]

    Meng Z P, Zhang S F, Wu S L 2020 J. Lumin. 227 117566Google Scholar

    [8]

    Tang M, Zhu X H, Zhang Y H, Zhang Z P, Zhang Z M, Mei Q S, Zhang J, Wu M H, Liu J L, Zhang Y 2019 ACS Nano 13 10405Google Scholar

    [9]

    Wang W, Feng Z, Li B, Chang Y L, Li X, Yan X, Chen R Z, Yu X M, Zhao H Y, Lu G Y, Kong X G, Qian J, Liu X M 2021 J. Mater. Chem. B 9 2899Google Scholar

    [10]

    Xu F, Sun Y, Gao H P, Jin S Y, Zhang Z L, Zhang H F, Pan G C, Kang M, Ma X Q, Mao Y L 2021 ACS Appl. Mater. Interfaces 13 2674Google Scholar

    [11]

    Tan M L, Li F, Wang X, Fan R W, Chen G Y 2020 ACS Nano 14 6532Google Scholar

    [12]

    Zhang H B, Chen Z H, He Y R, Yang S Y, Wei J 2021 ACS Appl. Mater. Interfaces 4 4340

    [13]

    Lin H, Xu D K, Li A M, Teng D D, Yang S H, Zhang Y L 2016 Sci. Rep. 6 28051Google Scholar

    [14]

    Lin H, Xu D K, Li A M, Qiu Z R, Yang S H, Zhang Y L 2017 New J. Chem. 41 1193Google Scholar

    [15]

    Seki K, Uematsu K, Toda K, Sato M 2014 Chem. Lett. 43 1213Google Scholar

    [16]

    Lin H, Xu D K, Li Y J, Yao L, Xu L Q, Ma Y, Yang S H, Zhang Y L 2018 Inorg. Chem. 57 15361Google Scholar

    [17]

    Joshi R, Perala R S, Shelar S B, Ballal A, Singh B P, Ningthoujam S 2021 ACS Appl. Mater. Interfaces 13 3481Google Scholar

    [18]

    Cheng Q, Sui J H, Cai W 2012 Nanoscale 4 779Google Scholar

    [19]

    Lin H, Cheng Z Y, Xu D K, Zhang X G, Ge J, Xu L Q, Ma Y, Yang S H, Zhang Y L 2021 J. Mater. Chem. C 9 4385Google Scholar

    [20]

    Lin H, Xu D K, Cheng Z Y, Li Y G, Xu L Q, Ma Y, Yang S H, Zhang Y L 2020 Appl. Surf. Sci. 514 146074Google Scholar

    [21]

    Ren P, Zheng X L, Zhang J, Camillis S D, Jia J G, Wang H, Liao X Z, Piper J A, Lu Y Q 2022 ACS Photonics 9 758

    [22]

    Fu X, Fu S, Lu Q, Zhang J, Wan P P, Liu J L, Zhang Y, Chen C, Li W, Wang H D, Mei Q S 2022 Nat. Commun. 13 4741Google Scholar

    [23]

    Gong G, Song Y, Tan H H, Xie S W, Zhang C F, Xu L J, Xu J X, Zheng J 2019 Compos. Part B 179 107504Google Scholar

    [24]

    Jia H, Li D G, Zhang D, Dong Y H, Ma S T, Zhou M, Di W H, Qin W P 2021 ACS Appl. Mater. Interfaces 13 4402Google Scholar

    [25]

    Shang Y F, Hao S W, Lv W Q, Chen T, Tian L, Lei Z T, Yang C H 2018 J. Mater. Chem. C 6 3869Google Scholar

    [26]

    Choi J E, Kim D, Jang H S 2019 Chem. Commun. 55 2261Google Scholar

    [27]

    Huang J S, Yan L, Liu S B, Song N, Zhang Q Y, Zhou B 2021 Adv. Funct. Mater. 31 2009796Google Scholar

    [28]

    Xie X Y, Li Q Q, Chen H R, Wang W, Wu F X, Tu L P, Zhang Y L, Kong X G, Chang Y L 2022 Nano Lett. 22 5339Google Scholar

    [29]

    Li D, Wen S H, Kong M Y, Liu Y T, Hu W, Shi B Y, Shi X Y, Jin D Y 2020 Anal. Chem. 92 10913Google Scholar

    [30]

    Szczeszak A, Jurga N, Lis S 2020 Ceram. Int. 46 26382Google Scholar

    [31]

    Tong L M, Lu E, Pichaandi J, Zhao G Y, Winnik M A 2016 J. Phys. Chem. C 120 6269Google Scholar

    [32]

    Chen Q S, Xie X J, Huang B L, Liang L L, Han S Y, Yi Z G, Wang Y, Li Y, Fan D Y, Huang L, Liu X G 2017 Angew. Chem. Int. Ed. 56 7605Google Scholar

    [33]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327Google Scholar

    [34]

    Cui X S, Cheng Y, Lin H, Wu Q P, Xu J, Wang Y S 2019 J. Rare Earths 37 573Google Scholar

    [35]

    Qiao Y F, Qiao S Q, Yu X, Min Q H, Pi C J, Qiu J B, Ma H Q, Yi J H, Zhan Q Q, Xu X H 2021 Nanoscale 13 8181Google Scholar

    [36]

    Gao W, Xing Y, Chen B H, Shao L, Zhang J J, Yan X W, Han Q Y, Zhang C Y, Liu L, Dong J 2023 J. Alloys Compd. 936 168371Google Scholar

    [37]

    Wu Q X, Xu Z, Wageh S, Al-Ghamdi A, Zhao S L 2021 J. Alloys Compd. 891 162067

    [38]

    Yan L, Huang J S, An Z C, Zhang Q Y, Zhou B 2022 Nano Lett. 22 7042Google Scholar

    [39]

    Gao W, Zhang C X, Han Q Y, Lu Y R, Yan X W, Wang Y K, Yang Y, Liu J H, Dong J 2022 J. Lumin. 241 118501Google Scholar

    [40]

    Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288Google Scholar

    [41]

    董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟 2021 70 154208Google Scholar

    Dong J, Zhang C X, Cheng X T, Xing Y, Han Q Y, Yan X W, Qi J X, Liu J H, Yang Y, Gao W 2021 Acta Phys. Sin. 70 154208Google Scholar

  • 图 1  NaErF4@NaYbF4及其包覆不同核壳结构的XRD图谱

    Fig. 1.  The XRD patterns of NaErF4@NaYbF4 and different C-S structures.

    图 2  NaErF4@NaYbF4及其包覆不同核壳结构的TEM和粒径分布

    Fig. 2.  The TEM images and size distribution of NaErF4@NaYbF4 and different C-S structures.

    图 3  在980 nm激发下, NaErF4@NaYbF4及其包覆不同核壳结构的(a)上转换发射光谱, (b)红绿比和(c)红、绿发射光积分强度

    Fig. 3.  (a) The UC emission spectra, (b) R/G ratio (c) red and green emission integration intensity of NaErF4@NaYbF4 and their coating with different C-S structures under 980 nm excitation.

    图 4  在980 nm不同激发功率下 (a)NaErF4:0.5%Tm3+@NaYbF4:2%Er3+@NaYF4 C-S晶体的上转换发射光谱; (b)红、绿光发射与泵浦功率依赖关系; (c)红、绿光发射强度对比(插图为其对应的红绿比)

    Fig. 4.  (a) The UC emission spectra , (b) power density dependence of red and green emission, and (c) comparison of red and green emission intensity of NaErF4:0.5%Tm3+@NaYbF4:2%Er3+ @ NaYF4 C-S structure under different excitation powers of 980 nm (The insert is corresponding R/G ratio).

    图 5  在980 nm激光激发下, NaErF4@NaYbF4及其包覆的不同核壳结构所对应的能级图及可能的跃迁机理图

    Fig. 5.  The corresponding energy level diagrams and possible transition mechanism diagrams of NaErF4@ NaYbF4 and their coating with different C-S structures under 980 nm excitation.

    图 6  在980 nm脉冲激光激发下, NaErF4@NaYbF4及其包覆不同核壳结构的寿命衰减曲线图

    Fig. 6.  The decay curves of NaErF4@NaYbF4 and their coating with different C-S structures under the excitation of a 980 nm pulse laser.

    Baidu
  • [1]

    Alkahtani M, Alsofyani N, Alfahd A, Almuqhim A A, Almuqhim F A, Alshehri A A, Qasem H, Hemmer P R 2021 Nanomaterials 11 284Google Scholar

    [2]

    Sun T Y, Li Y H, Ho W L, Zhu Q, Chen X, Jin L M, Zhu H M, Huang B L, Lin J, Little B E, Chu S T, Wang F 2019 Nat. Commun. 10 1811Google Scholar

    [3]

    Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G 2011 Nat. Mater. 10 968Google Scholar

    [4]

    Wang Y B, Lei L, Ye R G, Jia G H, Hua Y J, Deng D G, Xu S Q 2021 ACS Appl. Mater. Interfaces 13 23951Google Scholar

    [5]

    Bao H Q, Wang W, Li X, Liu X M, Zhang L, Yan X, Wang Y H, Wang C G, Jia X T, Sun P, Kong X G, Zhnag H, Lu G Y 2022 Adv. Optical Mater. 10 2101702Google Scholar

    [6]

    严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟 2019 68 174204Google Scholar

    Yan X W, Wang C J, Wang B Y, Sun Z Y, Zhang C X, Han Q Y, Qi J X, Dong J, Gao W 2019 Acta Phys. Sin. 68 174204Google Scholar

    [7]

    Meng Z P, Zhang S F, Wu S L 2020 J. Lumin. 227 117566Google Scholar

    [8]

    Tang M, Zhu X H, Zhang Y H, Zhang Z P, Zhang Z M, Mei Q S, Zhang J, Wu M H, Liu J L, Zhang Y 2019 ACS Nano 13 10405Google Scholar

    [9]

    Wang W, Feng Z, Li B, Chang Y L, Li X, Yan X, Chen R Z, Yu X M, Zhao H Y, Lu G Y, Kong X G, Qian J, Liu X M 2021 J. Mater. Chem. B 9 2899Google Scholar

    [10]

    Xu F, Sun Y, Gao H P, Jin S Y, Zhang Z L, Zhang H F, Pan G C, Kang M, Ma X Q, Mao Y L 2021 ACS Appl. Mater. Interfaces 13 2674Google Scholar

    [11]

    Tan M L, Li F, Wang X, Fan R W, Chen G Y 2020 ACS Nano 14 6532Google Scholar

    [12]

    Zhang H B, Chen Z H, He Y R, Yang S Y, Wei J 2021 ACS Appl. Mater. Interfaces 4 4340

    [13]

    Lin H, Xu D K, Li A M, Teng D D, Yang S H, Zhang Y L 2016 Sci. Rep. 6 28051Google Scholar

    [14]

    Lin H, Xu D K, Li A M, Qiu Z R, Yang S H, Zhang Y L 2017 New J. Chem. 41 1193Google Scholar

    [15]

    Seki K, Uematsu K, Toda K, Sato M 2014 Chem. Lett. 43 1213Google Scholar

    [16]

    Lin H, Xu D K, Li Y J, Yao L, Xu L Q, Ma Y, Yang S H, Zhang Y L 2018 Inorg. Chem. 57 15361Google Scholar

    [17]

    Joshi R, Perala R S, Shelar S B, Ballal A, Singh B P, Ningthoujam S 2021 ACS Appl. Mater. Interfaces 13 3481Google Scholar

    [18]

    Cheng Q, Sui J H, Cai W 2012 Nanoscale 4 779Google Scholar

    [19]

    Lin H, Cheng Z Y, Xu D K, Zhang X G, Ge J, Xu L Q, Ma Y, Yang S H, Zhang Y L 2021 J. Mater. Chem. C 9 4385Google Scholar

    [20]

    Lin H, Xu D K, Cheng Z Y, Li Y G, Xu L Q, Ma Y, Yang S H, Zhang Y L 2020 Appl. Surf. Sci. 514 146074Google Scholar

    [21]

    Ren P, Zheng X L, Zhang J, Camillis S D, Jia J G, Wang H, Liao X Z, Piper J A, Lu Y Q 2022 ACS Photonics 9 758

    [22]

    Fu X, Fu S, Lu Q, Zhang J, Wan P P, Liu J L, Zhang Y, Chen C, Li W, Wang H D, Mei Q S 2022 Nat. Commun. 13 4741Google Scholar

    [23]

    Gong G, Song Y, Tan H H, Xie S W, Zhang C F, Xu L J, Xu J X, Zheng J 2019 Compos. Part B 179 107504Google Scholar

    [24]

    Jia H, Li D G, Zhang D, Dong Y H, Ma S T, Zhou M, Di W H, Qin W P 2021 ACS Appl. Mater. Interfaces 13 4402Google Scholar

    [25]

    Shang Y F, Hao S W, Lv W Q, Chen T, Tian L, Lei Z T, Yang C H 2018 J. Mater. Chem. C 6 3869Google Scholar

    [26]

    Choi J E, Kim D, Jang H S 2019 Chem. Commun. 55 2261Google Scholar

    [27]

    Huang J S, Yan L, Liu S B, Song N, Zhang Q Y, Zhou B 2021 Adv. Funct. Mater. 31 2009796Google Scholar

    [28]

    Xie X Y, Li Q Q, Chen H R, Wang W, Wu F X, Tu L P, Zhang Y L, Kong X G, Chang Y L 2022 Nano Lett. 22 5339Google Scholar

    [29]

    Li D, Wen S H, Kong M Y, Liu Y T, Hu W, Shi B Y, Shi X Y, Jin D Y 2020 Anal. Chem. 92 10913Google Scholar

    [30]

    Szczeszak A, Jurga N, Lis S 2020 Ceram. Int. 46 26382Google Scholar

    [31]

    Tong L M, Lu E, Pichaandi J, Zhao G Y, Winnik M A 2016 J. Phys. Chem. C 120 6269Google Scholar

    [32]

    Chen Q S, Xie X J, Huang B L, Liang L L, Han S Y, Yi Z G, Wang Y, Li Y, Fan D Y, Huang L, Liu X G 2017 Angew. Chem. Int. Ed. 56 7605Google Scholar

    [33]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327Google Scholar

    [34]

    Cui X S, Cheng Y, Lin H, Wu Q P, Xu J, Wang Y S 2019 J. Rare Earths 37 573Google Scholar

    [35]

    Qiao Y F, Qiao S Q, Yu X, Min Q H, Pi C J, Qiu J B, Ma H Q, Yi J H, Zhan Q Q, Xu X H 2021 Nanoscale 13 8181Google Scholar

    [36]

    Gao W, Xing Y, Chen B H, Shao L, Zhang J J, Yan X W, Han Q Y, Zhang C Y, Liu L, Dong J 2023 J. Alloys Compd. 936 168371Google Scholar

    [37]

    Wu Q X, Xu Z, Wageh S, Al-Ghamdi A, Zhao S L 2021 J. Alloys Compd. 891 162067

    [38]

    Yan L, Huang J S, An Z C, Zhang Q Y, Zhou B 2022 Nano Lett. 22 7042Google Scholar

    [39]

    Gao W, Zhang C X, Han Q Y, Lu Y R, Yan X W, Wang Y K, Yang Y, Liu J H, Dong J 2022 J. Lumin. 241 118501Google Scholar

    [40]

    Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288Google Scholar

    [41]

    董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟 2021 70 154208Google Scholar

    Dong J, Zhang C X, Cheng X T, Xing Y, Han Q Y, Yan X W, Qi J X, Liu J H, Yang Y, Gao W 2021 Acta Phys. Sin. 70 154208Google Scholar

  • [1] 高伟, 张正宇, 张景蕾, 丁鹏, 韩庆艳, 张成云, 严学文, 董军. 基于单颗粒微米核壳晶体的微区上转换发射光谱构筑微纳光子学条形码.  , 2024, 73(18): 184202. doi: 10.7498/aps.73.20241015
    [2] 严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军. 单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理.  , 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [3] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性.  , 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [4] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化.  , 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [5] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究.  , 2021, (): . doi: 10.7498/aps.70.20211719
    [6] 董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟. 构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射.  , 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [7] 高伟, 王博扬, 孙泽煜, 高露, 张晨雪, 韩庆艳, 董军. 改变激发环境调控Ho3+离子的上转换发光特性.  , 2020, 69(3): 034207. doi: 10.7498/aps.69.20191333
    [8] 张佳晨, 鱼卫星, 肖发俊, 赵建林. 金薄膜衬底上介质-金属核壳结构的光学力调控.  , 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [9] 刘蓓, 陆奚建, 刘晓宁, 吴一品, 邹斌. 热注射法合成用于生物成像的核壳上转换纳米晶.  , 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [10] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟. 构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射.  , 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [11] 高伟, 董军. 共掺杂Ce3+调控-NaLuF4:Yb3+/Ho3+纳米晶体的上转换荧光发射.  , 2017, 66(20): 204206. doi: 10.7498/aps.66.204206
    [12] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性.  , 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [13] 毛鑫光, 王俊, 沈杰. 磁控溅射制备Er3+/Yb3+共掺杂TiO2薄膜的上转换发光特性.  , 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [14] 舒明飞, 尚玉黎, 陈威, 曹万强. 核壳结构对弛豫铁电体介电行为的影响.  , 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [15] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能.  , 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [16] 袁宁一, 陈效双, 丁建宁, 何泽军, 李锋, 陆卫. 溶胶-凝胶制备ZnO-SiO2复合膜的量子效应和上转换发光.  , 2009, 58(4): 2649-2653. doi: 10.7498/aps.58.2649
    [17] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光.  , 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [18] 温 磊, 张丽艳, 杨建虎, 汪国年, 陈 伟, 胡丽丽. 掺铒氟(卤)磷碲酸盐玻璃的上转换发光性能研究.  , 2006, 55(3): 1486-1490. doi: 10.7498/aps.55.1486
    [19] 陈晓波, 刘凯, 庄健, 王国文, 陈创天. HoYb:YVO4的上转换发光研究.  , 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
    [20] 赵丽娟, 孙聆东, 许京军, 张光寅. 用转移函数方法研究铒离子上转换发光与抽运功率的关系.  , 2001, 50(1): 63-67. doi: 10.7498/aps.50.63
计量
  • 文章访问数:  3561
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-06-18
  • 上网日期:  2023-07-07
  • 刊出日期:  2023-09-05

/

返回文章
返回
Baidu
map