Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Heredity of clusters in liquid Ta rapid solidification process and its correlation with local symmetry

Wen Da-Dong Qi Qing-Hua Huang Xin-Xin Yi Zhou Deng Yong-He Tian Ze-An Peng Ping

Citation:

Heredity of clusters in liquid Ta rapid solidification process and its correlation with local symmetry

Wen Da-Dong, Qi Qing-Hua, Huang Xin-Xin, Yi Zhou, Deng Yong-He, Tian Ze-An, Peng Ping
PDF
HTML
Get Citation
  • Metallic glass (MG) has received intensive attention in the fields of amorphous physics and materials science, owing to its excellent mechanical properties, good corrosion resistance, and large elastic deformation limit. Comparing with traditional oxide glass, the limited glass-forming ability (GFA) seriously restricts the application of MG in engineering. Therefore, the GFA has been a hot scientific issue in the field of amorphous material research. Recently, scientists have fully realized that GFA is closely related to the local atomic structure in liquid as well as its evolution features. Since the MG is called the “freezing” liquid, exploring the correlation of local atomic structures between liquid phase and solid phase under rapid solidification conditions is helpful in understanding the microstructural mechanism of GFA. Therefore, the rapid solidification process of liquid Ta is investigated via molecular dynamics simulation. The pair correlation function (PDF), the largest standard cluster (LSC), and the reverse atomic trajectory tracking methods are used to characterize and analyze the microstructure and its evolution during the rapid solicitation of liquid Ta. The results show that the local atomic configurations of the rapidly solidified Ta are various Kasper clusters as well as their distorted configurations, among of which [1/444, 10/555, 2/666] deformed icosahedron (or Z13 cluster) accounts for the highest proportion. The trend of hereditary ability of clusters revealed by the onset temperature of continuous heredity is consistent well with that by the fraction of staged heredity. The geometric symmetry of clusters can be quantitatively characterized by using the local symmetry parameter (LSP). The hereditary ability of clusters is closely related to their LSP. The local five-fold symmetry is beneficial to enhancing hereditary ability, while local four- and six-fold symmetry are disadvantageous for that. The probability of clusters with the same LSC index emerging in the energy range follows the Gaussian distribution, and the expected average atomic potential energy $ {E}_{\rm exp}^{j} $ is almost linearly related to the LSP, and $ {E}_{\rm exp}^{j} $ decreases with the increase of LSP5. The high local five-fold symmetry reduces the average atomic potential energy of LSC, thereby enhancing its configurational heredity. These findings have guiding significance in improving GFA through regulating the local symmetry of liquid monatomic metals or alloys.
      Corresponding author: Wen Da-Dong, ddwen@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51701071), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2021JJ30179, 2018JJ3100), and the Education Department Project of Hunan Province, China (Grant No. 22A0524).
    [1]

    吴渊, 刘雄军, 吕昭平 2022 物理 51 691Google Scholar

    Wu Y, Liu X J, Lu Z P 2022 Physics 51 691Google Scholar

    [2]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [3]

    汪卫华 2022 自然杂志 44 173Google Scholar

    Wang W H 2022 Chin. J. Nat. 44 173Google Scholar

    [4]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [5]

    Louzguine-Luzgin D V, Miracle D B, Inoue A 2008 Adv. Eng. Mater. 10 1008Google Scholar

    [6]

    Wei G Y, Cui J Z, Wang W, Guo X X, Ren J L, Wang W H 2022 Phys. Rev. Mater. 6 055601Google Scholar

    [7]

    李金富, 李伟 2022 金属学报 58 457Google Scholar

    Li J F, Li W 2022 Acta Metall. Sin. 58 457Google Scholar

    [8]

    Wang F R, Zhang H P, Li M Z 2018 J. Alloys Compd. 763 392Google Scholar

    [9]

    Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504Google Scholar

    [10]

    Zhang F, Ji M, Fang X W, Sun Y, Wang C Z, Mendelev M I, Kramer M J, Napolitanoa R E, Ho K M 2014 Acta Mater. 81 337Google Scholar

    [11]

    高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平 2020 69 046401Google Scholar

    Gao M, Deng Y H, Wen D D, Tian Z A, Zhao H P, Peng P 2020 Acta Phys. Sin. 69 046401Google Scholar

    [12]

    Sandor M T, Ke H B, Wang W H, Wu Y 2013 J. Phys. Condens. Matter. 25 165701Google Scholar

    [13]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503Google Scholar

    [14]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Nat. Commun. 6 8310Google Scholar

    [15]

    李茂枝 2017 66 176107Google Scholar

    Li M Z 2017 Acta Phys. Sin. 66 176107Google Scholar

    [16]

    Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501Google Scholar

    [17]

    Wen D D, Deng Y H, Gao M, Tian Z A 2021 Chin. Phys. B 30 076101Google Scholar

    [18]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Li W, Liu R S 2015 J. Non-Cryst. Solids 427 199Google Scholar

    [19]

    Chu W, Shang J X, Yin K B, Ren N N, Hu L N, Zhao Y B, Dong B S 2020 Acta Mater. 196 690Google Scholar

    [20]

    Zhai X T, Li X, Wang Z, Hu L N, Song K K, Tian Z A, Yue Y Z 2022 Acta Mater. 239 118246Google Scholar

    [21]

    Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X 2014 Nature 512 177Google Scholar

    [22]

    Zhao R, Jiang H Y, Luo P, Sun Y T, Li Z A, Wu W W, Shen L Q, Liu M, Zhao S F, Wen P, Zhang Q H, Gu L, Bai H Y, Wang W H 2020 Appl. Phys. Lett. 117 131903Google Scholar

    [23]

    Zhang J C, Chen C, Pei Q X, Wan Q, Zhang W X, Sha Z D 2015 Mater. Des. 77 1Google Scholar

    [24]

    Khmich A, Sbiaai K, Hasnaoui A 2019 J. Non-Cryst. Solids 510 81Google Scholar

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [26]

    https://sites.google.com/site/eampotentials/Ta [2020-5-4

    [27]

    Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177Google Scholar

    [28]

    Wu Z W, Li M Z, Wang W H, Song W J, Liu K X 2013 J. Chem. Phys. 138 074502Google Scholar

    [29]

    Zhang Y, Mattern N, Eckert J 2012 J. Appl. Phys. 111 053520Google Scholar

    [30]

    王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军 2018 金属学报 54 204Google Scholar

    Wang J C, Guo C, Zhang Q, Tang S, Li J J, Wang Z J 2018 Acta Metall. Sin. 54 204Google Scholar

    [31]

    Wen D D, Deng Y H, Dai X Y, Tian Z A, Peng P 2019 Philos. Mag. 99 2904Google Scholar

    [32]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001Google Scholar

    [33]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950Google Scholar

    [34]

    Wen D D, Deng Y H, Su Y F, Tian Z A 2020 Mod. Phys. Lett. B 34 2050316.Google Scholar

    [35]

    Deng Y H, Wen D D, Li Y, Peng P 2018 Philos. Mag. 20 1Google Scholar

    [36]

    Ostwald W 1897 Z. Phys. Chem. 22 289Google Scholar

  • 图 1  液态Ta快凝过程中平均原子势能Esys随温度T的变化

    Figure 1.  Temperature (T ) dependence of potential energy (Esys) per atom during the rapid solidification of liquid Ta.

    图 2  金属Ta 系统在不同温度下的双体分布函数g(r) (a) MD模拟与AIMD计算结果[23]的比较(T = 300 K), 内插图是MD模拟结构因子S(q)与实验值[22]的比较; (b) g(r)曲线随温度T的演化

    Figure 2.  The g(r) curves of metal Ta system at several selected temperatures: (a) Comparison of g(r) for Ta metallic glass at 300 K between present molecular dynamics (MD) simulation and ab-initio MD (AIMD) result[23]; insert is the comparison of S(q) for Ta metallic glass at 300 K between present MD simulation and experimental values[22]; (b) the evolution of g(r) curves with temperature (T ).

    图 3  基本原子团簇表征方法和Ta金属玻璃中典型的团簇 (a) 最大标准团簇(LSC) (小球上的编码用于标定原子的局域结构); (b) 共有近邻子团簇(CNS); (c)共有近邻(CNN); (d) Ta金属玻璃中典型LSC结构示意图. 橙色球代表团簇的中心原子; 绿色、灰色、粉色分别代表团簇中具有四次、五次和六次局域对称环境的壳层原子

    Figure 3.  Characterization of basic atomic clusters and schematic diagram of typical clusters in Ta metal glass: (a) Topology of largest standard cluster (LSC) (The encoding on the ball is used to identify the local structure of atoms); (b) a common neighbor subcluster (CNS); (c) common near neighbor (CNN); (d) schematic diagram of typical LSC structure in Ta metal glass. The orange sphere represents the central atom of the cluster; green, gray, and pink respectively represent the coordination atoms in the cluster with fourth, fifth, and sixth local symmetric environments.

    图 4  Ta金属玻璃中典型LSC的数目分布(a)及其在系统中的占比随温度的演化(b)

    Figure 4.  Distribution of typical LSC in Ta metallic glass (a) and their evolution with temperature (b).

    图 5  液态Ta快凝过程中典型SRO和MRO的遗传与演化示意图 (a) Z14 SRO的遗传; (b) 由Z12 形成的MRO的遗传与演化. 深蓝色与橙色球分别代表团簇中经遗传得到的壳层与中心原子, 浅蓝色与浅橙色分别代表团簇在演化过程中新增的壳层与中心原子, nNI分别表示MRO中的原子总数与中心数目

    Figure 5.  Schematic diagram of evolution and heredity for a short-range order (SRO) and a typical medium-range order (MRO) in the rapid solidification of liquid Ta: (a) Heredity of Z14 SRO; (b) heredity and evolution of an MRO formed by Z12 basic cluster. The dark blue and orange spheres respectively represent the inherited shell and center atoms in the cluster; while the light blue and light orange represent the newly added shell and center atoms in the evolution of cluster, respectively. n and NI represent the total number of atoms and the number of cores in MRO, respectively.

    图 6  Ta快凝过程中典型团簇的遗传起始温度与阶段遗传分数 (a)遗传起始温度Tonset; (b)阶段遗传分数

    Figure 6.  Onset temperature as well as the fraction of staged heredity of typical clusters during rapid solidification of liquid Ta: (a) The onset temperature Tonset of typical LSCs; (b) the fraction of staged heredity for different LSCs.

    图 7  典型LSC遗传特性与局域对称性参数LSP的关系 (a)遗传起始温度Tonset与LSP的关系; (b)阶段遗传分数fSH与LSP的关系

    Figure 7.  Correlation of LSP with the hereditary characteristics of typical LSC: (a) The relationship between Tonset and LSP; (b) correlation of LSP with fSH.

    图 8  快凝Ta中典型LSC的平均原子势能 (a) Ta金属玻璃(T = 300 K)中Z12与Z13出现的频率$ P_j({E}_{{\mathrm{C}}} )$随团簇平均原子势能EC的分布; (b)不同温度下典型LSC平均原子势能期望值$ {E}_{{\mathrm{e}}{\mathrm{x}}{\mathrm{p}}}^{j} $

    Figure 8.  Potential energy per atom of typical LSC in rapidly solidified metal Ta: (a) The distribution of the fraction of Z12 and Z13 in Ta metallic glass with potential energy per atom $ {E}_{{\mathrm{C}}} $ in LCS (T = 300 K); (b) expected potential energy per atom, $ {E}_{{\mathrm{e}}{\mathrm{x}}{\mathrm{p}}}^{j} $, for typical LSC at different temperatures

    图 9  $ {E}_{{\mathrm{e}}{\mathrm{x}}{\mathrm{p}}}^{j} $与局域对称性参数LSP的关系

    Figure 9.  Relationship between $ {E}_{{\mathrm{e}}{\mathrm{x}}{\mathrm{p}}}^{j} $ and the local symmetry parameter LSP.

    表 1  Ta金属玻璃中典型LSC的局域对称性参数LSP

    Table 1.  Local symmetry parameters (LSP) of typical LSC in Ta metal glass.

    LSCLSP4LSP5LSP6
    [12/555] (Z12)01.00000
    [1/444, 10/555, 2/666] (Z13)0.07690.76920.1538
    [3/444, 6/555, 4/666]0.23080.46150.3076
    [12/555, 2/666] (Z14)00.85710.1429
    [1/444, 10/555, 3/666]0.07140.71430.2143
    [2/444, 8/555, 4/666]0.14290.57140.2857
    [3/444, 6/555, 5/666]0.21420.42860.3571
    [12/555, 3/666] (Z15)00.80000.2000
    [1/444, 10/555, 4/666]0.06670.66670.2667
    [2/444, 8/555, 5/666]0.13330.53330.3333
    DownLoad: CSV
    Baidu
  • [1]

    吴渊, 刘雄军, 吕昭平 2022 物理 51 691Google Scholar

    Wu Y, Liu X J, Lu Z P 2022 Physics 51 691Google Scholar

    [2]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [3]

    汪卫华 2022 自然杂志 44 173Google Scholar

    Wang W H 2022 Chin. J. Nat. 44 173Google Scholar

    [4]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [5]

    Louzguine-Luzgin D V, Miracle D B, Inoue A 2008 Adv. Eng. Mater. 10 1008Google Scholar

    [6]

    Wei G Y, Cui J Z, Wang W, Guo X X, Ren J L, Wang W H 2022 Phys. Rev. Mater. 6 055601Google Scholar

    [7]

    李金富, 李伟 2022 金属学报 58 457Google Scholar

    Li J F, Li W 2022 Acta Metall. Sin. 58 457Google Scholar

    [8]

    Wang F R, Zhang H P, Li M Z 2018 J. Alloys Compd. 763 392Google Scholar

    [9]

    Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504Google Scholar

    [10]

    Zhang F, Ji M, Fang X W, Sun Y, Wang C Z, Mendelev M I, Kramer M J, Napolitanoa R E, Ho K M 2014 Acta Mater. 81 337Google Scholar

    [11]

    高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平 2020 69 046401Google Scholar

    Gao M, Deng Y H, Wen D D, Tian Z A, Zhao H P, Peng P 2020 Acta Phys. Sin. 69 046401Google Scholar

    [12]

    Sandor M T, Ke H B, Wang W H, Wu Y 2013 J. Phys. Condens. Matter. 25 165701Google Scholar

    [13]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503Google Scholar

    [14]

    Hu Y C, Li F X, Li M Z, Bai H Y, Wang W H 2015 Nat. Commun. 6 8310Google Scholar

    [15]

    李茂枝 2017 66 176107Google Scholar

    Li M Z 2017 Acta Phys. Sin. 66 176107Google Scholar

    [16]

    Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501Google Scholar

    [17]

    Wen D D, Deng Y H, Gao M, Tian Z A 2021 Chin. Phys. B 30 076101Google Scholar

    [18]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Li W, Liu R S 2015 J. Non-Cryst. Solids 427 199Google Scholar

    [19]

    Chu W, Shang J X, Yin K B, Ren N N, Hu L N, Zhao Y B, Dong B S 2020 Acta Mater. 196 690Google Scholar

    [20]

    Zhai X T, Li X, Wang Z, Hu L N, Song K K, Tian Z A, Yue Y Z 2022 Acta Mater. 239 118246Google Scholar

    [21]

    Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X 2014 Nature 512 177Google Scholar

    [22]

    Zhao R, Jiang H Y, Luo P, Sun Y T, Li Z A, Wu W W, Shen L Q, Liu M, Zhao S F, Wen P, Zhang Q H, Gu L, Bai H Y, Wang W H 2020 Appl. Phys. Lett. 117 131903Google Scholar

    [23]

    Zhang J C, Chen C, Pei Q X, Wan Q, Zhang W X, Sha Z D 2015 Mater. Des. 77 1Google Scholar

    [24]

    Khmich A, Sbiaai K, Hasnaoui A 2019 J. Non-Cryst. Solids 510 81Google Scholar

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [26]

    https://sites.google.com/site/eampotentials/Ta [2020-5-4

    [27]

    Martyna G J, Tobias D J, Klein M L 1994 J. Chem. Phys. 101 4177Google Scholar

    [28]

    Wu Z W, Li M Z, Wang W H, Song W J, Liu K X 2013 J. Chem. Phys. 138 074502Google Scholar

    [29]

    Zhang Y, Mattern N, Eckert J 2012 J. Appl. Phys. 111 053520Google Scholar

    [30]

    王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军 2018 金属学报 54 204Google Scholar

    Wang J C, Guo C, Zhang Q, Tang S, Li J J, Wang Z J 2018 Acta Metall. Sin. 54 204Google Scholar

    [31]

    Wen D D, Deng Y H, Dai X Y, Tian Z A, Peng P 2019 Philos. Mag. 99 2904Google Scholar

    [32]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001Google Scholar

    [33]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950Google Scholar

    [34]

    Wen D D, Deng Y H, Su Y F, Tian Z A 2020 Mod. Phys. Lett. B 34 2050316.Google Scholar

    [35]

    Deng Y H, Wen D D, Li Y, Peng P 2018 Philos. Mag. 20 1Google Scholar

    [36]

    Ostwald W 1897 Z. Phys. Chem. 22 289Google Scholar

  • [1] Chen Bei, Deng Yong-He, Qi Qing-Hua, Gao Ming, Wen Da-Dong, Wang Xiao-Yun, Peng Ping. Analysis of icosahedral structure in rapidly solidified Pd82Si18 amorphous alloy under high pressure. Acta Physica Sinica, 2024, 73(2): 026101. doi: 10.7498/aps.73.20231101
    [2] Xing He-Wei, Chen Zhan-Xiu, Yang Li, Su Yao, Li Yuan-Hua, Huhe Cang. Molecular dynamics simulation of effect of non-condensable gases on heat transfer of water molecule flow in nanochannels. Acta Physica Sinica, 2024, 73(9): 094701. doi: 10.7498/aps.73.20240192
    [3] Chen Bei, Wang Xiao-Yun, Liu Tao, Gao Ming, Wen Da-Dong, Deng Yong-He, Peng Ping. Symmetry and order of the kinetic heterogeneity in Pd-Si amorphous alloys. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241051
    [4] Jiang Yuan-Qi. Simulation and analysis of melting behavior of local atomic structure of refractory metals vanadium. Acta Physica Sinica, 2020, 69(20): 203601. doi: 10.7498/aps.69.20200185
    [5] Gao Ming, Deng Yong-He, Wen Da-Dong, Tian Ze-An, Zhao He-Ping, Peng Ping. Evolution characteristics and hereditary mechanisms of clusters in rapidly solidified Pd82Si18 alloy. Acta Physica Sinica, 2020, 69(4): 046401. doi: 10.7498/aps.69.20190970
    [6] Zheng Zhi-Xiu, Zhang Lin. Atomic-scale simulation study of structural changes of Fe-Cu binary system containing Cu clusters embedded in the Fe matrix during heating. Acta Physica Sinica, 2017, 66(8): 086301. doi: 10.7498/aps.66.086301
    [7] Yao Jian-Gang, Gong Bao-An, Wang Yuan-Xu. Dissociative adsorptions of NO on Yn (n=1–12) clusters. Acta Physica Sinica, 2013, 62(24): 243601. doi: 10.7498/aps.62.243601
    [8] Li Chun-Li, Duan Hai-Ming, Kerem Mardan. Molecular dynamical simulations of the melting properties of Aln(n=13–32) clusters. Acta Physica Sinica, 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [9] Wen Da-Dong, Peng Ping, Jiang Yuan-Qi, Tian Ze-An, Liu Rang-Su. A track study on icosahedral clusters inherited from liquid in the process of rapid solidification of Cu64Zr36 alloy. Acta Physica Sinica, 2013, 62(19): 196101. doi: 10.7498/aps.62.196101
    [10] Cheng Xin-Lu, Zhang Hong, Feng Cheng-Yi. Superfluidity and quantum localization of para-H2 clusters and ortho-D2 clusters. Acta Physica Sinica, 2011, 60(1): 013602. doi: 10.7498/aps.60.013602
    [11] Han Xiao-Jing, Wang Yin, Lin Zheng-Zhe, Zhang Wen-Xian, Zhuang Jun, Ning Xi-Jing. Theoretical prediction of the growth probabilities for cluster isomers. Acta Physica Sinica, 2010, 59(5): 3445-3449. doi: 10.7498/aps.59.3445
    [12] Fan Qin-Na, Li Wei, Zhang Lin. Molecular dynamics study of relaxation and local structure changes in a rapidly quenched molten Cu57 cluster. Acta Physica Sinica, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [13] Zhang Lin, Xu Song-Ning, Li Wei, Sun Hai-Xia, Zhang Cai-Bei. Structural changes during freezing and coalescing of small sized clusters on atomic scale. Acta Physica Sinica, 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [14] Zhao Qian, Zhang Lin, Qi Yang, Zhang Zong-Ning. Molecular dynamics study of structures of a Cu13 cluster supported on a Cu(001) surface at low temperatures. Acta Physica Sinica, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [15] Zhang Zong-Ning, Liu Mei-Lin, Li Wei, Geng Chang-Jian, Zhao Qian, Zhang Lin. Molecular dynamics study of freezing a molten Cu55 cluster on Cu(010)surface. Acta Physica Sinica, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [16] Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics study on structural change of a Au959 cluster supported on MgO(100) surface at low temperature. Acta Physica Sinica, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [17] Xu Song-Ning, Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics simulations of a molten Cu55 cluster embedded in face-centred cubic bulk during. Acta Physica Sinica, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [18] Zhou Shi-Yun, Wang Yin, Ning Xi-Jing. A quasi-dynamics method for searching for cluster isomers. Acta Physica Sinica, 2008, 57(1): 387-391. doi: 10.7498/aps.57.387
    [19] Yuan Zhe, He Chun-Long, Wang Xiao-Lu, Liu Hai-Tao, Li Jia-Ming. First-principle molecular dynamics study of clusters:optimum valence bond scheme. Acta Physica Sinica, 2005, 54(2): 628-635. doi: 10.7498/aps.54.628
    [20] LIU JIAN-SHENG, LI RU-XIN, ZHU PIN-PIN, XU ZHI-ZHAN, LIU JING-RU. DYNAMICS OF LARGE-SIZE ATOMIC CLUSTERS IN ULTRA-SHORT HIGH-INTENSITY LASER PULSES. Acta Physica Sinica, 2001, 50(6): 1121-1127. doi: 10.7498/aps.50.1121
Metrics
  • Abstract views:  2308
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  17 July 2023
  • Accepted Date:  02 September 2023
  • Available Online:  18 September 2023
  • Published Online:  20 December 2023

/

返回文章
返回
Baidu
map