Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dose-rate sensitivity of deep sub-micro complementary metal oxide semiconductor process

Zheng Qi-Wen Cui Jiang-Wei Wang Han-Ning Zhou Hang Yu De-Zhao Wei Ying Su Dan-Dan

Citation:

Dose-rate sensitivity of deep sub-micro complementary metal oxide semiconductor process

Zheng Qi-Wen, Cui Jiang-Wei, Wang Han-Ning, Zhou Hang, Yu De-Zhao, Wei Ying, Su Dan-Dan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Enhancing low dose rate sensitivity (ELDRS) in bipolar device is a major problem of liner circuit radiation hardness prediction for space application. ELDRS is usually attributed to space-charge effect. A key element is the difference in transport rate between holes and protons in SiO2. Interface-trap formation at high dose rate is reduced due to positive charge buildup in the Si/SiO2 interfacial region (due to the trapping of holes and/or protons) which reduces the flow rates of subsequent holes and protons (relative to the low-dose-rate case) from the bulk of the oxide to the Si/SiO2 interface. Generally speaking, the dose rate of metal oxide semiconductor (MOS) device is time dependent when annealing of radiation-induced charge is taken into account. The degradation of MOS device induced by the low dose rate irradiation is the same as that by high dose rate when annealing of radiation-induced charge is taken into account. However, radiation response of new generation MOS device is dominated by charge buildup in shallow trench isolation (STI) rather than gate oxide as older generation device. Unlike gate oxides, which are routinely grown by thermal oxidation, field oxides are produced using a wide variety of deposition techniques. As a result, they are typically thick (100 nm), soft to ionizing radiation, and electric field is far less than that of gate oxide, which is similar to the passivation layer of bipolar device and may lead to ELDRS. Therefore, dose-rate sensitivities of n-type metal oxide semiconductor field effect transistor (NMOSFET) and static random access memory (SRAM) manufactured by 0.18 m complementary metal oxide semiconductor (CMOS) process are explored experimentally and theoretically in this paper. Radiation-induced leakages in NMOSFET and SRAM are examined each as a function of dose rate. Under the worst-case bias, the degradation of NMOSFET is more severe under the low dose rate irradiation than under the high dose rate irradiation and anneal. Moreover, radiation-induced standby current rising in SRAM is more severe under the low dose rate irradiation than under the high dose rate irradiation even when anneal is not considered. The above experimental results reveal that the dose-rate sensitivity of deep sub-micron CMOS process is not related to time-dependent effects of CMOS devices. Mathematical description of the combination between enhanced low dose-rate sensitivity and timedependent effects as applied to radiation-induced leakage in NMOSFET is developed. It has been numerically found that non time-dependent effect of deep sub-micron CMOS device arises due to the competition between enhanced low dose-rate sensitivity in bottom of STI and time-dependent effect at the top of STI. The high dose rate irradiation is overly conservative for devices used in a low dose rate environment. The test method provides an extended room temperature anneal test to allow leakage-related parameters that exceed postirradiation specifications to return to a specified range.
      Corresponding author: Cui Jiang-Wei, cuijw@ms.xjb.ac.cn
    • Funds: Project supported by the West Light Foundation of The Chinese Academy of Sciences, China (Grant No. XBBS201219).
    [1]

    Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N 1991 IEEE Trans. Nucl. Sci. 38 1342

    [2]

    Sharma A K, Sahu K, Brashears S 1996 Radiation Effects Data Workshop 1996, IEEE Indian Wells, USA, 19 July, 1996 p13

    [3]

    Lu W, Ren D Y, Guo Q, Yu X F, Fan L, Zhang G Q, Yan R L 1998 Chin. J. Semicond. 19 374 (in Chinese) [陆妩, 任迪远, 郭旗, 余学峰, 范隆, 张国强, 严荣良 1998 半导体学报 19 374]

    [4]

    Yui C C, McClure S S, Rax B G, Lehman J M, Minto T D, Wiedeman M D 2002 Total Dose Bias Dependency and ELDRS Effects in Bipolar Linear Devices (IEEE: Radiation Effects Data Workshop) pp131-137

    [5]

    Zheng Y Z 2010 Ph. D. Dissertation (Wulumuqi: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) (in Chinese) [郑玉展 2010 博士学位论文 (乌鲁木齐: 中国科学院新疆理化技术研究所)]

    [6]

    Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F, He C F 2009 Acta Phys. Sin. 58 5572 (in Chinese) [郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学峰, 何承发 2009 58 5572]

    [7]

    Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483

    [8]

    Schroeder J E, Gingerich B L, Bechtel G R 1984 IEEE Trans. Nucl. Sci. 31 1327

    [9]

    James R S, Marty R S, Daniel M F, James A F, Dodd P E, Philippe P, Veronique F C 2008 IEEE Trans. Nucl. Sci. 55 1833

    [10]

    Steven C W, Ronald C L, Jon V O, John M H, Steven C M 2005 IEEE Trans. Nucl. Sci. 52 2602

    [11]

    Johnston A H, Swimm R T, Miyahira T F 2010 IEEE Trans. Nucl. Sci. 57 3279

    [12]

    Ivan S E, Hugh J B, Philippe C A, Bernard G R, Harold P H, Michael L M, Ronald L P 2011 IEEE Trans. Nucl. Sci. 58 2945

    [13]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Chin. Phys. B 20 070701

    [14]

    Zheng Q W, Yu X F, Cui J W, Guo Q, Ren D Y, Cong Z C 2013 Acta Phys. Sin. 62 116101 (in Chinese) [郑齐文, 余学峰, 崔江维, 郭旗, 任迪远, 丛忠超 2013 62 116101]

    [15]

    Zheng Q W, Yu X F, Cui J W, Guo Q, Ren D Y, Cong Z C, Zhou H 2014 Chin. Phys. B 23 106102

    [16]

    Zheng Q W, Cui J W, Zhou H, Yu D Z, Yu X F, Lu W, Guo Q, Ren D Y 2015 Chin. Phys. B 24 106106

  • [1]

    Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N 1991 IEEE Trans. Nucl. Sci. 38 1342

    [2]

    Sharma A K, Sahu K, Brashears S 1996 Radiation Effects Data Workshop 1996, IEEE Indian Wells, USA, 19 July, 1996 p13

    [3]

    Lu W, Ren D Y, Guo Q, Yu X F, Fan L, Zhang G Q, Yan R L 1998 Chin. J. Semicond. 19 374 (in Chinese) [陆妩, 任迪远, 郭旗, 余学峰, 范隆, 张国强, 严荣良 1998 半导体学报 19 374]

    [4]

    Yui C C, McClure S S, Rax B G, Lehman J M, Minto T D, Wiedeman M D 2002 Total Dose Bias Dependency and ELDRS Effects in Bipolar Linear Devices (IEEE: Radiation Effects Data Workshop) pp131-137

    [5]

    Zheng Y Z 2010 Ph. D. Dissertation (Wulumuqi: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) (in Chinese) [郑玉展 2010 博士学位论文 (乌鲁木齐: 中国科学院新疆理化技术研究所)]

    [6]

    Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F, He C F 2009 Acta Phys. Sin. 58 5572 (in Chinese) [郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学峰, 何承发 2009 58 5572]

    [7]

    Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483

    [8]

    Schroeder J E, Gingerich B L, Bechtel G R 1984 IEEE Trans. Nucl. Sci. 31 1327

    [9]

    James R S, Marty R S, Daniel M F, James A F, Dodd P E, Philippe P, Veronique F C 2008 IEEE Trans. Nucl. Sci. 55 1833

    [10]

    Steven C W, Ronald C L, Jon V O, John M H, Steven C M 2005 IEEE Trans. Nucl. Sci. 52 2602

    [11]

    Johnston A H, Swimm R T, Miyahira T F 2010 IEEE Trans. Nucl. Sci. 57 3279

    [12]

    Ivan S E, Hugh J B, Philippe C A, Bernard G R, Harold P H, Michael L M, Ronald L P 2011 IEEE Trans. Nucl. Sci. 58 2945

    [13]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Chin. Phys. B 20 070701

    [14]

    Zheng Q W, Yu X F, Cui J W, Guo Q, Ren D Y, Cong Z C 2013 Acta Phys. Sin. 62 116101 (in Chinese) [郑齐文, 余学峰, 崔江维, 郭旗, 任迪远, 丛忠超 2013 62 116101]

    [15]

    Zheng Q W, Yu X F, Cui J W, Guo Q, Ren D Y, Cong Z C, Zhou H 2014 Chin. Phys. B 23 106102

    [16]

    Zheng Q W, Cui J W, Zhou H, Yu D Z, Yu X F, Lu W, Guo Q, Ren D Y 2015 Chin. Phys. B 24 106106

  • [1] Jia Xiao-Fei, Wei Qun, Zhang Wen-Peng, He Liang, Wu Zhen-Hua. Analysis of thermal noise characteristics in 10 nm metal oxide semiconductor field effect transistor. Acta Physica Sinica, 2023, 72(22): 227303. doi: 10.7498/aps.72.20230661
    [2] Ma Xin, Lu Bin, Dong Lin-Peng, Miao Yuan-Hao. A novel TMOSFET ternary inverter based on hybrid conduction mechanism. Acta Physica Sinica, 2023, 72(18): 188501. doi: 10.7498/aps.72.20230819
    [3] Chen Xiao-Liang, Sun Wei-Feng. Radiation hardening by process technology for high voltage nMOSFET in 180 nm embeded flash process. Acta Physica Sinica, 2022, 71(23): 236102. doi: 10.7498/aps.71.20221172
    [4] Wang Shuo, Chang Yong-Wei, Chen Jing, Wang Ben-Yan, He Wei-Wei, Ge Hao. Total ionizing dose effects on innovative silicon-on-insulator static random access memory cell. Acta Physica Sinica, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [5] Ma Wu-Ying, Yao Zhi-Bin, He Bao-Ping, Wang Zu-Jun, Liu Min-Bo, Liu Jing, Sheng Jiang-Kun, Dong Guan-Tao, Xue Yuan-Yuan. Radiation effect and degradation mechanism in 65 nm CMOS transistor. Acta Physica Sinica, 2018, 67(14): 146103. doi: 10.7498/aps.67.20172542
    [6] Wang Fan, Li Yu-Dong, Guo Qi, Wang Bo, Zhang Xing-Yao, Wen Lin, He Cheng-Fa. Total ionizing dose radiation effects in foue-transistor complementary metal oxide semiconductor image sensors. Acta Physica Sinica, 2016, 65(2): 024212. doi: 10.7498/aps.65.024212
    [7] Zhou Chun-Yu, Zhang He-Ming, Hu Hui-Yong, Zhuang Yi-Qi, Lü Yi, Wang Bin, Wang Guan-Yu. Charge model of strained Si NMOSFET. Acta Physica Sinica, 2014, 63(1): 017101. doi: 10.7498/aps.63.017101
    [8] Chen Rui, Yu Yong-Tao, Shangguan Shi-Peng, Feng Guo-Qiang, Han Jian-Wei. Mechanism of multiple bit upsets induced by localized latch-up effect in 90 nm complementary metal semiconductor static random-access memory. Acta Physica Sinica, 2014, 63(12): 128501. doi: 10.7498/aps.63.128501
    [9] Wang Xin, Lu Wu, Wu Xue, Ma Wu-Ying, Cui Jiang-Wei, Liu Mo-Han, Jiang Ke. Radiation effect of deep-submicron metal-oxide-semiconductor field-effect transistor and parasitic transistor. Acta Physica Sinica, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [10] Cong Zhong-Chao, Yu Xue-Feng, Cui Jiang-Wei, Zheng Qi-Wen, Guo Qi, Sun Jing, Wang Bo, Ma Wu-Ying, Ma Li-Ya, Zhou Hang. Online and offline test method of total dose radiation damage on static random access memory. Acta Physica Sinica, 2014, 63(8): 086101. doi: 10.7498/aps.63.086101
    [11] Xin Yan-Hui, Liu Hong-Xia, Wang Shu-Long, Fan Xiao-Jiao. Two-dimensional analytical models for the symmetrical triple-material double-gate strained Si MOSFETs. Acta Physica Sinica, 2014, 63(14): 148502. doi: 10.7498/aps.63.148502
    [12] Xiao Yao, Guo Hong-Xia, Zhang Feng-Qi, Zhao Wen, Wang Yan-Ping, Ding Li-Li, Fan Xue, Luo Yin-Hong, Zhang Ke-Ying. Synergistic effects of total ionizing dose on the single event effect sensitivity of static random access memory. Acta Physica Sinica, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [13] Ding Li-Li, Guo Hong-Xia, Chen Wei, Yan Yi-Hua, Xiao Yao, Fan Ru-Yu. Simulation study of the influence of ionizing irradiation on the single event upset vulnerability of static random access memory. Acta Physica Sinica, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [14] Zheng Qi-Wen, Yu Xue-Feng, Cui Jiang-Wei, Guo Qi, Ren Di-Yuan, Cong Zhong-Chao. Research on SRAM functional failure mode induced by total ionizing dose irradiation. Acta Physica Sinica, 2013, 62(11): 116101. doi: 10.7498/aps.62.116101
    [15] Li Ming, Yu Xue-Feng, Xue Yao-Guo, Lu Jian, Cui Jiang-Wei, Gao Bo. Research on the total dose irradiation effect of partial-depletion-silicon-on insulator static random access memory. Acta Physica Sinica, 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [16] Lan Bo, Gao Bo, Cui Jiang-Wei, Li Ming, Wang Yi-Yuan, Yu Xue-Feng, Ren Di-Yuan. Theorical model of enhanced low dose rate sensitivity observed in p-type metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [17] He Bao-Ping, Ding Li-Li, Yao Zhi-Bin, Xiao Zhi-Gang, Huang Shao-Yan, Wang Zu-Jun. Three-dimensional simulation of total dose effects on ultra-deep submicron devices. Acta Physica Sinica, 2011, 60(5): 056105. doi: 10.7498/aps.60.056105
    [18] Li Wei-Hua, Zhuang Yi-Qi, Du Lei, Bao Jun-Lin. Non-Gaussianity of noise in n-type metal oxide semiconductor field effect transistor. Acta Physica Sinica, 2009, 58(10): 7183-7188. doi: 10.7498/aps.58.7183
    [19] Zhang Ke-Ying, Guo Hong-Xia, Luo Yin-Hong, He Bao-Ping, Yao Zhi-Bin, Zhang Feng-Qi, Wang Yuan-Ming. Three-dimensional numerial simulation of single event upset effects in static random access memory. Acta Physica Sinica, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [20] Zhang Qing-Xiang, Hou Ming-Dong, Liu Jie, Wang Zhi-Guang, Jin Yun-Fan, Zhu Zhi-Yong, Sun You-Mei. The dependence of single event upset cross-section on incident angle. Acta Physica Sinica, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
Metrics
  • Abstract views:  6899
  • PDF Downloads:  181
  • Cited By: 0
Publishing process
  • Received Date:  03 November 2015
  • Accepted Date:  26 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map