搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

180 nm嵌入式闪存工艺中高压NMOS器件工艺加固技术

陈晓亮 孙伟锋

引用本文:
Citation:

180 nm嵌入式闪存工艺中高压NMOS器件工艺加固技术

陈晓亮, 孙伟锋

Radiation hardening by process technology for high voltage nMOSFET in 180 nm embeded flash process

Chen Xiao-Liang, Sun Wei-Feng
PDF
HTML
导出引用
  • 抗辐射嵌入式闪存工艺在航空航天领域应用广泛, 其中高压NMOS器件对总剂量辐射效应最敏感, 对该器件进行加固是提高芯片抗辐射能力的关键之一. 本文采用浅槽隔离(STI)场区离子注入工艺对180 nm嵌入式闪存工艺中的高压NMOS器件进行加固, 实验结果表明该加固器件存在两个主要问题: 1)浅槽刻蚀后进行离子注入, 后续热工艺较多, 存在显著的杂质再分布效应, 导致STI侧壁离子浓度降低, 经过1×105 rad (1 rad = 10–2 Gy)(Si)辐照后, 器件因漏电流增大而无法关断; 2)加固离子注入降低了漏区PN结击穿电压, 不能满足实际应用需求. 为解决上述问题, 本文提出了一种新型部分沟道离子注入加固方案. 该方案调整加固离子注入工艺至热预算较多的栅氧工艺之后, 减弱了离子再分布效应. 另外, 仅在STI边缘的沟道中部进行离子注入, 不影响漏击穿电压. 采用本方案对高压NMOS器件进行总剂量工艺加固, 不改变器件的条形栅设计, 对器件电学参数影响较小, 与通用工艺兼容性好. 测试结果表明, 器件经过1.5×105 rad (Si)总剂量辐照后, 关态漏电流保持在10–12 A左右, 这比传统的STI场区离子注入加固方案降低了5个数量级.
    Radiation-hardened embedded flash technology is widely used in aerospace field. The high voltage nMOSFET is the key device to be hardened as it is the most sensitive device to total ionizing dose (TID) effect. In this study, the shallow tench isolation (STI) sidewall implantation method is used to harden 5 V nMOSFET for 180 nm eFlash process. Through the study of the TID response of the device, two problems emerge in this hardening technology. Firstly, the hardening ions are implanted after STI trench etching, the doping profile is influenced by the following thermal process, resulting in lower doping concentration at STI edge. The device fails to work due to high leakage current after 1×105 rad (1 rad = 10–2 Gy) (Si) radiation. Secondly, the hardening ions that are implanted in drain region reduce the breakdown voltage of PN junction on the drain side. Device cannot satisfy the actual requirement in the circuit. To solve these problems, we propose a new device hardening method called partial channel ion implantation. Comparing with previous method, in order to reduce the doping redistribution effect, we adjust the hardening ion implantation to an extent after the oxidation of gate oxide. Moreover, an extra mask is introduced to determine the hardening implantation region to avoid ion implantation on the drain side of the device. Therefore, the drain breakdown voltage will not be influenced by hardening implantation. By using this new hardening technology for high voltage NMOS, the device can maintain the typical design of strip-type gate. The hardening method is compatible with general process technology and does not influence the electrical parameters of the device obviously. The results show that with the partial channel ion implantation method, the drain leakage of the device is kept at a pico-ampere level after 1.5×105 rad (Si) radiation. That is five orders of magnitude lower than that obtained by using previous STI implantation hardening technology.
      通信作者: 陈晓亮, four_1@126.com
      Corresponding author: Chen Xiao-Liang, four_1@126.com
    [1]

    Barnaby H J, McLain M L, Sanchez Esqueda I, Chen X J 2009 IEEE Trans. Circuits Syst. Ⅰ 56 1870Google Scholar

    [2]

    卓青青, 刘红侠, 杨兆年, 蔡慧民, 郝跃 2012 61 220702Google Scholar

    Zhuo Q Q, Liu H X, Yang Z N, Cai H M, Hao Y 2012 Acta Phys. Sin. 61 220702Google Scholar

    [3]

    Zheng M Q, Liu Y, Duan C, Luo M T 2014 12 th IEEE International Conference on Solid-State and Integrated Circuit Technology Guilin, China, October 28–31, 2014 p1

    [4]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Microelectron. Reliab. 51 1148Google Scholar

    [5]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 Microelectron. Reliab. 51 1295Google Scholar

    [6]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Wang R, Zou S C 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 3498Google Scholar

    [7]

    刘一宁, 杨亚鹏, 陈法国, 张建岗, 郭荣, 梁润成 2021 核技术 44 030502Google Scholar

    Liu Y N, Yang Y P, Chen F G, Zhang J G, Guo R, Liang R C 2021 Nucl. Tech. 44 030502Google Scholar

    [8]

    Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, VÉronique F C 2008 IEEE Trans. Nucl. Sci. 55 1833Google Scholar

    [9]

    Dodd P E, Shaneyfelt M R, Schwank J R, Felix 2010 IEEE Trans. Nucl. Sci. 57 1747Google Scholar

    [10]

    王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯 2014 22 226101Google Scholar

    Wang X, Lu W, Wu X, Ma W Y, Cui J W, Liu M H, Jiang K 2014 Acta Phys. Sin. 22 226101Google Scholar

    [11]

    郑齐文, 崔江维, 王汉宁, 周航, 余德昭, 魏莹, 苏丹丹 2016 65 076102Google Scholar

    Zheng Q W, Cui J W, Wang H N, Zhou H, Yu D Z, Wei Y, Su D D 2016 Acta Phys. Sin. 65 076102Google Scholar

    [12]

    Giovanni B, Valentino L, Alberto S, Stefano G 2013 Proceedings of the European Conference on Radiation and its Effects on Components and Systems Oxford, UK, September 23–27, 2013 p1

    [13]

    范雪, 李威, 李平, 张斌, 谢小东, 王刚, 胡滨, 翟亚红 2012 61 016106Google Scholar

    Fan X, Li W, Li P, Zhang B, Xie X D, Wang G, Hu B, Zhai Y H 2012 Acta Phys. Sin. 61 016106Google Scholar

    [14]

    Clark L T, Mohr K C, Holbert K E 2007 IEEE International Reliability Physics Symposium Proceedings Phoenix, USA, April 15–19, 2007 p582

    [15]

    Lee M S, Lee H C 2013 IEEE Trans. Nucl. Sci. 60 3084Google Scholar

    [16]

    Malik M, Prakash N R, Kumar A, Jatana H S 2022 Silicon 14 3891Google Scholar

    [17]

    董艺, 沈鸣杰, 刘岐 2018 航天器环境工程 35 468Google Scholar

    Dong Y, Shen M J, Liu Q 2018 Spacecr. Environ. Eng. 35 468Google Scholar

    [18]

    Chang J S, Chong K S, Shu W, Lin T, Jiang J, Lwin N K Z, Kang Y 2014 IEEE 57th International Midwest Symposium on Circuits and Systems College Station, USA, August 3–6, 2014 p821

    [19]

    Vaz P I, Both T H, Vidor F F, Brum R M, Wirth G I 2018 J. Electron. Test. 34 735Google Scholar

    [20]

    Song L, Hu Z Y, Zhang M Y, Liu X N, Dai L H, Zhang Z X, Zou S C 2017 Microelectron. Reliab. 74 1Google Scholar

    [21]

    Peng C, Hu Z Y, En Y F, Chen Y Q, Lei Z F, Zhang Z G, Zhang Z X, Li B 2018 IEEE Trans. Nucl. Sci. 65 877Google Scholar

    [22]

    谢儒彬, 吴建伟, 陈海波, 李艳艳, 洪根深 2016 太赫兹科学与电子信息学报 14 805Google Scholar

    Xie R B, Wu J W, Chen H B, Li Y Y, Hong G S 2016 J. Terahertz Sci. Electron. Inf. Technol. 14 805Google Scholar

    [23]

    王思浩, 鲁庆, 王文华, 安霞, 黄如 2010 59 1970Google Scholar

    Wang S H, Lu Q, Wang W H, An X, Huang R 2010 Acta Phys. Sin. 59 1970Google Scholar

  • 图 1  MOS结构中辐照产生和积累电荷能带示意图[8]

    Fig. 1.  Band diagram of radiation induced charge generation and accumulation in MOS structure[8].

    图 2  辐射导致的STI侧壁寄生NMOS示意图

    Fig. 2.  Schematic of radiation induced parasitic NMOS at STI sidewall.

    图 3  传统的STI场区离子注入加固技术示意图 (a)器件版图; (b)工艺示意图

    Fig. 3.  Schematic of traditional ion implantation technology on STI field region: (a) Layout of the device; (b) diagram of the process

    图 4  5 V NMOS器件总剂量效应测试结果 (a) 无STI场区离子注入; (b) 场区离子注入剂量5×1013 cm–2 ; (c) 场区离子注入剂量8×1013 cm–2

    Fig. 4.  Total ionizing dose test results of 5 V NMOS device: (a) Without STI field implantation; (b) STI filed implantation dose 5×1013 cm–2 ; (c) STI filed implantation dose 8×1013 cm–2.

    图 5  STI边缘掺杂离子浓度仿真 (a) STI结构中离子浓度分布图; (b) 不同工艺热预算下不同位置的离子浓度分布对比

    Fig. 5.  Simulation of doping concentration at STI edge region: (a) Ion distribution of STI structure; (b) doping profile comparison at various positions under different thermal budget.

    图 6  STI场区离子注入对漏击穿电压的影响示意图

    Fig. 6.  Schematic of the impact of ion implantation on drain breakdown voltage.

    图 7  STI场区加固注入剂量对器件漏击穿电压的影响

    Fig. 7.  Impact of hardening implantation dose on drain breakdown voltage.

    图 8  新型抗总剂量加固注入器件结构和能带图

    Fig. 8.  Device structure and band diagram with the new hardening ion implantation.

    图 9  采用部分沟道离子注入器件总剂量效应 (a)加固注入剂量2×1013 cm–2; (b)加固注入剂5×1013 cm–2 ; (c)加固注入剂量8×1013 cm–2

    Fig. 9.  TID effect of the devices with partial channel hardened implantation: (a) Hardening implantation dose 2×1013 cm–2 ; (b) hardening implantation dose 5×1013 cm–2 ; (c) hardening implantation dose 8×1013 cm–2.

    表 1  STI场区离子注入实验分片方案

    Table 1.  Split condition of ion implantation for experiment

    样品STI场区离子加固注入
    能量/keV剂量/cm–2
    #11200
    #21205×1013
    #31208×1013
    下载: 导出CSV

    表 2  两种注入加固方案测试结果对比

    Table 2.  Comparison of two total ionizing dose hardening methodology.

    测试条件和参数STI场区加固技术部分沟道离子注入技术
    #1#2#3 #4#5#6
    辐照前VT/V0.720.750.78 0.740.760.79
    IDsat/(μA·μm–1)428421431426433430
    Ioff /(pA·μm–1)9.79.51.42.01.12.2
    BVD/V12.211.411.1 12.112.212.1
    1×105 rad(Si)辐照后VT/VNANA0.35 0.670.650.69
    IDsat/(μA·μm–1)448436445444449441
    Ioff /(pA·μm–1)1.9×1072.5×1075.0×1065.3×1025.93.0
    辐照后
    参数变化
    ΔVT/%–55.1–9.5–14.5–12.7
    ΔIDsat/%4.73.63.24.23.72.6
    ΔIoff/%1.4×1082.6×1083.6×1082.6×1054.2×10236
    下载: 导出CSV
    Baidu
  • [1]

    Barnaby H J, McLain M L, Sanchez Esqueda I, Chen X J 2009 IEEE Trans. Circuits Syst. Ⅰ 56 1870Google Scholar

    [2]

    卓青青, 刘红侠, 杨兆年, 蔡慧民, 郝跃 2012 61 220702Google Scholar

    Zhuo Q Q, Liu H X, Yang Z N, Cai H M, Hao Y 2012 Acta Phys. Sin. 61 220702Google Scholar

    [3]

    Zheng M Q, Liu Y, Duan C, Luo M T 2014 12 th IEEE International Conference on Solid-State and Integrated Circuit Technology Guilin, China, October 28–31, 2014 p1

    [4]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Microelectron. Reliab. 51 1148Google Scholar

    [5]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 Microelectron. Reliab. 51 1295Google Scholar

    [6]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Wang R, Zou S C 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 3498Google Scholar

    [7]

    刘一宁, 杨亚鹏, 陈法国, 张建岗, 郭荣, 梁润成 2021 核技术 44 030502Google Scholar

    Liu Y N, Yang Y P, Chen F G, Zhang J G, Guo R, Liang R C 2021 Nucl. Tech. 44 030502Google Scholar

    [8]

    Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, VÉronique F C 2008 IEEE Trans. Nucl. Sci. 55 1833Google Scholar

    [9]

    Dodd P E, Shaneyfelt M R, Schwank J R, Felix 2010 IEEE Trans. Nucl. Sci. 57 1747Google Scholar

    [10]

    王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯 2014 22 226101Google Scholar

    Wang X, Lu W, Wu X, Ma W Y, Cui J W, Liu M H, Jiang K 2014 Acta Phys. Sin. 22 226101Google Scholar

    [11]

    郑齐文, 崔江维, 王汉宁, 周航, 余德昭, 魏莹, 苏丹丹 2016 65 076102Google Scholar

    Zheng Q W, Cui J W, Wang H N, Zhou H, Yu D Z, Wei Y, Su D D 2016 Acta Phys. Sin. 65 076102Google Scholar

    [12]

    Giovanni B, Valentino L, Alberto S, Stefano G 2013 Proceedings of the European Conference on Radiation and its Effects on Components and Systems Oxford, UK, September 23–27, 2013 p1

    [13]

    范雪, 李威, 李平, 张斌, 谢小东, 王刚, 胡滨, 翟亚红 2012 61 016106Google Scholar

    Fan X, Li W, Li P, Zhang B, Xie X D, Wang G, Hu B, Zhai Y H 2012 Acta Phys. Sin. 61 016106Google Scholar

    [14]

    Clark L T, Mohr K C, Holbert K E 2007 IEEE International Reliability Physics Symposium Proceedings Phoenix, USA, April 15–19, 2007 p582

    [15]

    Lee M S, Lee H C 2013 IEEE Trans. Nucl. Sci. 60 3084Google Scholar

    [16]

    Malik M, Prakash N R, Kumar A, Jatana H S 2022 Silicon 14 3891Google Scholar

    [17]

    董艺, 沈鸣杰, 刘岐 2018 航天器环境工程 35 468Google Scholar

    Dong Y, Shen M J, Liu Q 2018 Spacecr. Environ. Eng. 35 468Google Scholar

    [18]

    Chang J S, Chong K S, Shu W, Lin T, Jiang J, Lwin N K Z, Kang Y 2014 IEEE 57th International Midwest Symposium on Circuits and Systems College Station, USA, August 3–6, 2014 p821

    [19]

    Vaz P I, Both T H, Vidor F F, Brum R M, Wirth G I 2018 J. Electron. Test. 34 735Google Scholar

    [20]

    Song L, Hu Z Y, Zhang M Y, Liu X N, Dai L H, Zhang Z X, Zou S C 2017 Microelectron. Reliab. 74 1Google Scholar

    [21]

    Peng C, Hu Z Y, En Y F, Chen Y Q, Lei Z F, Zhang Z G, Zhang Z X, Li B 2018 IEEE Trans. Nucl. Sci. 65 877Google Scholar

    [22]

    谢儒彬, 吴建伟, 陈海波, 李艳艳, 洪根深 2016 太赫兹科学与电子信息学报 14 805Google Scholar

    Xie R B, Wu J W, Chen H B, Li Y Y, Hong G S 2016 J. Terahertz Sci. Electron. Inf. Technol. 14 805Google Scholar

    [23]

    王思浩, 鲁庆, 王文华, 安霞, 黄如 2010 59 1970Google Scholar

    Wang S H, Lu Q, Wang W H, An X, Huang R 2010 Acta Phys. Sin. 59 1970Google Scholar

  • [1] 顾朝桥, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 张鸿, 琚安安, 柳奕天. 不同应力下碳化硅场效应晶体管器件总剂量效应及退火特性.  , 2021, 70(16): 166101. doi: 10.7498/aps.70.20210515
    [2] 曹杨, 习凯, 徐彦楠, 李梅, 李博, 毕津顺, 刘明. 55 nm硅-氧化硅-氮化硅-氧化硅-硅闪存单元的γ射线和X射线电离总剂量效应研究.  , 2019, 68(3): 038501. doi: 10.7498/aps.68.20181661
    [3] 王硕, 常永伟, 陈静, 王本艳, 何伟伟, 葛浩. 新型绝缘体上硅静态随机存储器单元总剂量效应.  , 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [4] 徐平, 唐少拓, 袁霞, 黄海漩, 杨拓, 罗统政, 喻珺. 嵌入式三色光变器设计.  , 2018, 67(2): 024202. doi: 10.7498/aps.67.20170782
    [5] 徐平, 袁霞, 杨拓, 黄海漩, 唐少拓, 黄燕燕, 肖钰斐, 彭文达. 嵌入式三色光变器.  , 2017, 66(12): 124201. doi: 10.7498/aps.66.124201
    [6] 汤华莲, 许蓓蕾, 庄奕琪, 张丽, 李聪. 工艺偏差下PMOS器件的负偏置温度不稳定效应分布特性.  , 2016, 65(16): 168502. doi: 10.7498/aps.65.168502
    [7] 郑齐文, 崔江维, 王汉宁, 周航, 余徳昭, 魏莹, 苏丹丹. 超深亚微米互补金属氧化物半导体器件的剂量率效应.  , 2016, 65(7): 076102. doi: 10.7498/aps.65.076102
    [8] 卓青青, 刘红侠, 彭里, 杨兆年, 蔡惠民. 总剂量辐照条件下部分耗尽半导体氧化物绝缘层N沟道金属氧化物半导体器件的三种kink效应.  , 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [9] 张兴尧, 郭旗, 陆妩, 张孝富, 郑齐文, 崔江维, 李豫东, 周东. 串口型铁电存储器总剂量辐射损伤效应和退火特性.  , 2013, 62(15): 156107. doi: 10.7498/aps.62.156107
    [10] 卓青青, 刘红侠, 王志. 三维H形栅SOINMOS器件总剂量条件下的单粒子效应.  , 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [11] 宁冰旭, 胡志远, 张正选, 毕大炜, 黄辉祥, 戴若凡, 张彦伟, 邹世昌. 总剂量辐照效应对窄沟道SOI NMOSFET器件的影响.  , 2013, 62(7): 076104. doi: 10.7498/aps.62.076104
    [12] 彭里, 卓青青, 刘红侠, 蔡惠民. 栅长对PD SOI NMOS器件总剂量辐照效应影响的实验研究.  , 2012, 61(24): 240703. doi: 10.7498/aps.61.240703
    [13] 卓青青, 刘红侠, 杨兆年, 蔡惠民, 郝跃. 偏置条件对SOI NMOS器件总剂量辐照效应的影响.  , 2012, 61(22): 220702. doi: 10.7498/aps.61.220702
    [14] 胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明, 邹世昌. 深亚微米器件沟道长度对总剂量辐照效应的影响.  , 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [15] 高博, 刘刚, 王立新, 韩郑生, 张彦飞, 王春林, 温景超. 国产星用VDMOS器件总剂量辐射损伤效应研究.  , 2012, 61(17): 176107. doi: 10.7498/aps.61.176107
    [16] 刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌. 0.18 m MOSFET器件的总剂量辐照效应.  , 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [17] 何宝平, 丁李利, 姚志斌, 肖志刚, 黄绍燕, 王祖军. 超深亚微米器件总剂量辐射效应三维数值模拟.  , 2011, 60(5): 056105. doi: 10.7498/aps.60.056105
    [18] 何宝平, 姚志斌. 互补金属氧化物半导体器件空间低剂量率辐射效应预估模型研究.  , 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [19] 王 俊, 王 磊, 董业民, 邹 欣, 邵 丽, 李文军, 杨华岳. 高压双扩散漏端MOS晶体管双峰衬底电流的形成机理及其影响.  , 2008, 57(7): 4492-4496. doi: 10.7498/aps.57.4492
    [20] 乔 明, 张 波, 李肇基, 方 健, 周贤达. 背栅效应对SOI横向高压器件击穿特性的影响.  , 2007, 56(7): 3990-3995. doi: 10.7498/aps.56.3990
计量
  • 文章访问数:  4521
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-07-27
  • 上网日期:  2022-11-28
  • 刊出日期:  2022-12-05

/

返回文章
返回
Baidu
map