Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Semi-Dirac cone and singular features of two-dimensional three-component phononic crystals

Gao Han-Feng Zhang Xin Wu Fu-Gen Yao Yuan-Wei

Citation:

Semi-Dirac cone and singular features of two-dimensional three-component phononic crystals

Gao Han-Feng, Zhang Xin, Wu Fu-Gen, Yao Yuan-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to accidental degeneracy, a semi-Dirac point is realized at the center of the Brillouin zone in a two-dimensional phononic crystal (PC) consisting of a square array of core-shell-structure elliptical cylinders in water. In the vicinity of the semi-Dirac point, the dispersion is linear along the X direction, but it is quadratic along the Y direction. The semi-Dirac point is formed by the degeneracy of dipole and quadrupole modes, through accurately adjusting the radius of the cores and shells, the two modes will coincide and the dispersion relation will become linear. It is worth to be emphasised that the frequency of the semi-Dirac point is very low in our designed PC, and this is exactly the special advantage of a three-component system. Since the dispersion relation is different in the vicinity of the semi-Dirac point, some new features may be seen. Firstly, the anisotropic transmission phenomenon is demonstrated. A PC slab is placed in a rectangular waveguide where the sound hard boundary conditions are used on the upper and lower walls; a plane wave impinges on the PC slab along the X direction at the semi-Dirac point frequency, and total transmission can be achieved, so that the sound energy transmissivity is also equal to one. In the meantime, the waves experience no spatial phase changes when they are transmitting through the PC slab; this behavior indicates that the PC can be equivalent to zero index medium along the X direction. However, when the plane wave is incident along the Y direction, the transmitted field is very weak, and the sound energy transmission is nearly zero. Secondly, the properties of the semi-Dirac point can be applied to design acoustic diode. The scatterers of the PC are arranged in triangular prism shapes and placed into a straight waveguide; when the wave is incident along the X direction, it can be transmitted through the PC slab and emerge in the right area, but when the waves is incident from the opposite direction, it will be totally reflected back. Therefore, the semi-Dirac point in PC provides a way to realize the acoustic diode. Finally, the unidirectional wave-front shape effect can also be observed in our considered system. We put a square sample with 16-by-16 coating rods into water medium. When a tightly focused Gaussian beam impinges on the PC sample along the X direction at the semi-Dirac point frequency, the outgoing wave will be modulated to a plan wave. Whereas, when the incident wave along the Y direction, the Gaussian beam will be totally reflected. In conclusion, the singular features of semi-Dirac point in PC will provides an advantageous means to manipulate acoustic waves and exploit new functional materials.
      Corresponding author: Zhang Xin, xinxintwinkle@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374066, 11374068) and the Natural Science Foundation of Guangdong, China (Grant No. S2012020010885).
    [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [2]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [3]

    Katsnelson M I 2006 Eur. Phys. J. B 51 157

    [4]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [5]

    Sepkhanov R A, Bazaliy Y B, Beenakker C W J 2007 Phys. Rev. A 75 063813

    [6]

    Zhang X D, Liu Z Y 2008 Phys. Rev. Lett. 101 264303

    [7]

    Yu S Y, Wang Q, Zheng L Y, He C, Liu X P, Lu M H, Chen Y F 2015 Appl. Phys. Lett. 106 151906

    [8]

    Liu F M, Huang X Q, Chan C T 2012 Appl. Phys. Lett. 100 071911

    [9]

    Liu F M, Lai Y, Huang X Q, Chan C T 2011 Phys. Rev. B 84 224113

    [10]

    Peng P, Mei J, Wu Y 2012 Phys. Rev. B 86 134304

    [11]

    Smith M J A, McPhedran R C Meylan M H 2014 Wave Random Complex 24 35

    [12]

    Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141

    [13]

    Chen Z G, Ni X, Wu Y, He C, Sun X C, Zheng L Y, Lu M H, Chen Y F 2014 Sci. Rep. 4 4613

    [14]

    Lu J Y, Qiu C Y, Xu S J, Ye Y T, Ke M Z, Liu Z Y 2014 Phys. Rev. B 89 134302

    [15]

    Li Y, Wu Y, Mei J 2014 Appl. Phys. Lett. 105 014107

    [16]

    Torrent D, Snchez-Dehesa J 2012 Phys. Rev. Lett. 108 174301

    [17]

    Wei Q, Cheng Y, Liu X J 2013 Appl. Phys. Lett. 102 174104

    [18]

    Fleury R, Al A 2013 Phys. Rev. Lett. 111 055501

    [19]

    Pardo V, Pickett W E 2009 Phys. Rev. Lett. 102 166803

    [20]

    Banerjee S, Singh R R P, Pardo V, Pickett W E 2009 Phys. Rev. Lett. 103 016402

    [21]

    Huang X Q, Chen Z T 2015 Acta Phys. Sin. 64 184208 (in Chinese) [黄学勤, 陈子亭 2015 64 184208]

    [22]

    Wang X, Chen L C, Liu Y H, Shi Y L, Sun Y 2015 Acta Phys. Sin. 64 174206 (in Chinese) [王晓, 陈立潮, 刘艳红, 石云龙, 孙勇 2015 64 174206]

    [23]

    Wu Y 2014 Opt. Express 22 1906

    [24]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734

    [25]

    Liu Z Y, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103

    [26]

    Li J, Liu Z Y, Qiu C Y 2006 Phys. Rev. B 73 054302

    [27]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 053505

    [28]

    Li Y, Mei J 2015 Opt. Express 23 12089

    [29]

    Liang B, Yuan B, Cheng J C 2009 Phys. Rev. Lett. 103 104301

    [30]

    Liang B, Guo X S, Tu J, Zhang D, Cheng J C 2010 Nat. Mater. 10 1038

  • [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [2]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [3]

    Katsnelson M I 2006 Eur. Phys. J. B 51 157

    [4]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [5]

    Sepkhanov R A, Bazaliy Y B, Beenakker C W J 2007 Phys. Rev. A 75 063813

    [6]

    Zhang X D, Liu Z Y 2008 Phys. Rev. Lett. 101 264303

    [7]

    Yu S Y, Wang Q, Zheng L Y, He C, Liu X P, Lu M H, Chen Y F 2015 Appl. Phys. Lett. 106 151906

    [8]

    Liu F M, Huang X Q, Chan C T 2012 Appl. Phys. Lett. 100 071911

    [9]

    Liu F M, Lai Y, Huang X Q, Chan C T 2011 Phys. Rev. B 84 224113

    [10]

    Peng P, Mei J, Wu Y 2012 Phys. Rev. B 86 134304

    [11]

    Smith M J A, McPhedran R C Meylan M H 2014 Wave Random Complex 24 35

    [12]

    Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141

    [13]

    Chen Z G, Ni X, Wu Y, He C, Sun X C, Zheng L Y, Lu M H, Chen Y F 2014 Sci. Rep. 4 4613

    [14]

    Lu J Y, Qiu C Y, Xu S J, Ye Y T, Ke M Z, Liu Z Y 2014 Phys. Rev. B 89 134302

    [15]

    Li Y, Wu Y, Mei J 2014 Appl. Phys. Lett. 105 014107

    [16]

    Torrent D, Snchez-Dehesa J 2012 Phys. Rev. Lett. 108 174301

    [17]

    Wei Q, Cheng Y, Liu X J 2013 Appl. Phys. Lett. 102 174104

    [18]

    Fleury R, Al A 2013 Phys. Rev. Lett. 111 055501

    [19]

    Pardo V, Pickett W E 2009 Phys. Rev. Lett. 102 166803

    [20]

    Banerjee S, Singh R R P, Pardo V, Pickett W E 2009 Phys. Rev. Lett. 103 016402

    [21]

    Huang X Q, Chen Z T 2015 Acta Phys. Sin. 64 184208 (in Chinese) [黄学勤, 陈子亭 2015 64 184208]

    [22]

    Wang X, Chen L C, Liu Y H, Shi Y L, Sun Y 2015 Acta Phys. Sin. 64 174206 (in Chinese) [王晓, 陈立潮, 刘艳红, 石云龙, 孙勇 2015 64 174206]

    [23]

    Wu Y 2014 Opt. Express 22 1906

    [24]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734

    [25]

    Liu Z Y, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103

    [26]

    Li J, Liu Z Y, Qiu C Y 2006 Phys. Rev. B 73 054302

    [27]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 053505

    [28]

    Li Y, Mei J 2015 Opt. Express 23 12089

    [29]

    Liang B, Yuan B, Cheng J C 2009 Phys. Rev. Lett. 103 104301

    [30]

    Liang B, Guo X S, Tu J, Zhang D, Cheng J C 2010 Nat. Mater. 10 1038

  • [1] Ji Yu-Xuan, Zhang Ming-Kai, Li Yan. Dual-band semi-Dirac cones in two-dimensional photonic crystal and zero-index material. Acta Physica Sinica, 2024, 73(18): 181101. doi: 10.7498/aps.73.20240800
    [2] Gu Zi-Heng, Zang Qiang, Zheng Gai-Ge. Dispersion properties of van der Waals phonon polaritons modulated by Weyl semimetals. Acta Physica Sinica, 2023, 72(19): 197102. doi: 10.7498/aps.72.20230167
    [3] Qian Li-Ming, Sun Meng-Ran, Zheng Gai-Ge. Coupling interactions of anisotropic hyperbolic phonon polaritons in double layered orthorhombic molybdenum trioxide. Acta Physica Sinica, 2023, 72(7): 077101. doi: 10.7498/aps.72.20222144
    [4] Zhou Xiao-Xia, Chen Ying, Cai Li. An ultra-narrow-band optical filter based on zero refractive index metamaterial. Acta Physica Sinica, 2023, 72(17): 174205. doi: 10.7498/aps.72.20230394
    [5] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [6] Zhang Gao-Jian, Wang Yi-Pu. Observation of the anisotropic exceptional point in cavity magnonics system. Acta Physica Sinica, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [7] Lu Zhi-Ren, Liang Bin-Ming, Ding Jun-Wei, Chen Jia-Bi, Zhuang Song-Lin. Goos-Hnchen shift based on nearzero-refractive-index materials. Acta Physica Sinica, 2016, 65(15): 154208. doi: 10.7498/aps.65.154208
    [8] Geng Tao, Wu Na, Dong Xiang-Mei, Gao Xiu-Min. Tunable near-zero index of self-assembled photonic crystal using magnetic fluid. Acta Physica Sinica, 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [9] Lu Min, Huang Hui-Lian, Yu Dong-Hai, Liu Wei-Qing, Wei Wang-He. Anisotropy of melting of Ag nanocrystal with different crystallographic planes at high temperature. Acta Physica Sinica, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [10] Huang Xue-Qin, Chan Che-Ting. Dirac-like cones at k=0. Acta Physica Sinica, 2015, 64(18): 184208. doi: 10.7498/aps.64.184208
    [11] Cao Hui-Xian, Mei Jun. Semi-Dirac points in two-dimensional phononic crystals. Acta Physica Sinica, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [12] Zhang Yong-Wei, Yin Chun-Hao, Zhao Qiang, Li Fu-Qiang, Zhu Shan-Shan, Liu Hai-Shun. Theoretical research of correlation of electronic structure with birefringence and anisotropy of TiO2. Acta Physica Sinica, 2012, 61(2): 027801. doi: 10.7498/aps.61.027801
    [13] Ling Rui-Liang, Feng Jin, Feng Jin-Fu. Quantized energy spectrum and exact wave function of three-dimensional anisotropic coupled harmonic oscillator. Acta Physica Sinica, 2010, 59(12): 8348-8358. doi: 10.7498/aps.59.8348
    [14] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [15] Wan Yong, Han Wen-Juan, Liu Jun-Hai, Xia Lin-Hua, Xavier Mateos, Valentin Petrov, Zhang Huai-Jin, Wang Ji-Yang. Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 crystal. Acta Physica Sinica, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [16] Zhou Jian-Hua, Liu Hong-Yao, Luo Hai-Lu, Wen Shuang-Chun. Backward wave propagation in anisotropic metamaterials. Acta Physica Sinica, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [17] Cai Li, Han Xiao-Yun, Wen Xi-Sen. The elastic wave propagation in two-dimensional phononic crystal at low frequencies and the anisotropy of effective velocity. Acta Physica Sinica, 2008, 57(3): 1746-1752. doi: 10.7498/aps.57.1746
    [18] Zhuang Fei, Shen Jian-Qi. Investigation of photon geometric phases inside a curved fiber made of biaxially anisotropic left-handed media. Acta Physica Sinica, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
    [19] Zhuang Fei, Xiao San-Shui, Shang Lian-Ju, He Sai-Ling. . Acta Physica Sinica, 2002, 51(9): 2167-2172. doi: 10.7498/aps.51.2167
    [20] . Acta Physica Sinica, 2002, 51(2): 355-361. doi: 10.7498/aps.51.355
Metrics
  • Abstract views:  7662
  • PDF Downloads:  252
  • Cited By: 0
Publishing process
  • Received Date:  30 August 2015
  • Accepted Date:  23 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map