-
本文设计了一种由椭圆介电柱子组成的正方晶格光子晶体结构. 通过调节椭圆柱子的大小和放置角度,在布里渊区中心同时实现两个不同频率的双重偶然简并,并获得两个不同波段的半狄拉克锥. 更有趣的是,这两个半狄拉克锥沿椭圆柱子长轴和短轴两个方向表现出的线性和非线性色散关系正好相反, k · p 微扰理论也进一步证实了这种奇异的色散关系. 数值计算结果表明在两个半狄拉克点频率附近,本文所设计的正方晶格光子晶体在线性色散所在方向上等效为阻抗匹配的双零折射率材料,而在非线性色散所在方向上只能等效为单零折射率材料,即沿椭圆柱子长轴和短轴两个方向的等效零折射率展现出差异性. 而两个不同波段的半狄拉克锥所对应的这种等效零折射率的各向异性截然相反,因此可利用“Y”型光子晶体板将两种不同频率的电磁波成功分离开来.Semi-Dirac cones, a type of unique dispersion relation, always exhibit a series of interesting transport properties, such as electromagnetic topological transitions and anisotropic electromagnetic transmission. Recently, dual-band semi-Dirac cones have been found in three-dimensional photonic crystals, presenting great potential in electromagnetic wave regulation. However, to the best of our knowledge, there has been no report on dual-band semi-Dirac cones and their applications in two-dimensional photonic crystals, most two-dimensional systems have only realized semi-Dirac cones at a single frequency. Therefore, we aim to achieve dual-band semi-Dirac cones in two-dimensional photonic crystals.
In this work, a type of two-dimensional photonic crystal that comprises a square lattice of elliptical cylinders embedded in air is proposed. By rotating the elliptical cylinders and adjusting their sizes appropriately, accidental degeneracies at two different frequencies are achieved simultaneously in the center of the Brillouin zone. Using k · p perturbation theory, the dispersion relations near the two degenerate points are proved to be nonlinear in one direction, and linear in other directions, as shown in Figures (c) and (d). These results indicate that the double accidental degenerate points are two semi-Dirac points with different frequencies, and two different semi-Dirac cones, i.e., dual-band semi-Dirac cones, are realized simultaneously in the photonic crystal designed by us. More interestingly, the dual-band semi-Dirac cones exhibit opposite linear and nonlinear dispersion relations along the major axis and minor axis of the ellipse. And our photonic crystal can be equivalent to an impedance-matched double-zero index material in the direction of linear dispersion and a single-zero index material in the direction of nonlinear dispersion, which is demonstrated by the perfect transmission in the straight waveguide and wavefront shaping capabilities of electromagnetic waves. Based on the different properties of the equivalent zero-refractive-indices near two semi-Dirac points frequencies, a designed Y-type waveguide can be used to realize frequency separation by directing plane waves of different frequencies out along different ports, just as shown in Figures (e) and (f). We believe that our work is meaningful in broadening the exploration of the band structures of two-dimensional photonic crystals and providing greater convenience for the regulation of electromagnetic waves.-
Keywords:
- photonic crystal /
- semi-Dirac cone /
- zero-index material
-
[1] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[2] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
[3] Zandbergen S R, de Dood M J A 2010 Phys. Rev. Lett. 104 043903
[4] Zhang X D, Liu Z Y 2008 Phys. Rev. Lett. 101 264303
[5] Zhang X D 2008 Phys. Rev. Lett. 100 113903
[6] Li Y, Wu Y, Chen X, Mei J 2013 Opt. Express 21 7699
[7] Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141
[8] Luo J, Lai Y 2022 Front. Phys. 10 845624
[9] Zhou X X, Chen Y, Cai L 2023 Acta Phys. Sin. 72 174205 (in Chinese) [周晓霞,陈英,蔡力 2023 72 174205]
[10] Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582
[11] Xu C Q, Lyu K Q, Wu Y 2023 EPL 141 15002
[12] Wang X, Jiang H T, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L, Chen H 2014 EPL 108 14002
[13] Huang X Q, Chan C T 2015 Acta Phys. Sin. 64 184208 (in Chinese) [黄学勤,陈子亭 2015 64 184208]
[14] Dong J W, Chang M L, Huang X Q, Hang Z H, Zhong Z C, Chen W J, Huang Z Y, Chan C T 2015 Phys. Rev. Lett. 114 163901
[15] Li Y, Chan C T, Mazur E 2021 Light Sci. Appl. 10 203
[16] Sakoda K 2012 Opt. Express 20 9925
[17] Li Y, Mei J 2015 Opt. Express 23 12089
[18] Wu Y 2014 Opt. Express 22 1906
[19] Cao H X, Mei J 2015 Acta Phys. Sin. 64 194301 (in Chinese) [曹惠娴,梅军 2015 64 194301]
[20] Yasa U G, Turduev M, Giden I H, Kurt H 2018 Phys. Rev. B 97 195131
[21] Zhang X J, Wu Y 2015 Sci. Rep. 5 7892
[22] Yang Y T, Jia Z Y, Xu T, Luo J, Lai Y, Hang Z H 2019 Appl. Phys. Lett. 114 161905
[23] Bor E, Turduev M, Yasa U G, Kurt H, Staliunas K 2018 Phys. Rev. B 98 245112
[24] Yan Y, Luo Y J 2023 Opt. Laser Technol. 164 109558
[25] He X T, Zhong Y N, Zhou Y, Zhong Z C, Dong J W 2015 Sci. Rep. 5 13085
[26] Vertchenko L, DeVault C, Malureanu R, Mazur E, Lavrinenko A 2021 Laser Photonics Rev. 15 2000559
[27] Bor E, Yasa U G, Kurt H, Turduev M 2020 Opt. Lett. 45 2423
[28] Li M Y, Mei R, Yan D Y, Ma Z K, Cao F, Xu Y D, Xu C Q, Luo J 2024 Phys. Rev. B 109 125432
[29] Goerbig M O 2011 Rev. Mod. Phys. 83 1193
[30] Pardo V, Pickett W E 2009 Phys. Rev. Lett. 102 166803
[31] Banerjee S, Singh R R P, Pardo V, Pickett W E 2009 Phys. Rev. Lett. 103 016402
[32] Montambaux G, Piéchon F, Fuchs J N, Goerbig M O 2009 Phys. Rev. B 80 153412
[33] Xiang H X, Zhai F 2024 Phys. Rev. B 109 035432
[34] Ye P P, Xu L, Zhang J 2018 Mod. Phys. Lett. B 32 1850193
[35] Assili M, Haddad S 2013 J. Phys. Condens. Matter 25 365503
计量
- 文章访问数: 140
- PDF下载量: 2
- 被引次数: 0