-
Goos-Hnchen shift is a special optical phenomenon. With the development of the nano-optics, Goos-Hnchen shift has become one of the most valuable and hottest issues in optical field. Meanwhile, due to the unique feature of the near-zero-refractive-index material, it has been used in many fields, but the effect of Goos-Hnchen shift has little studied and received less attention. As a result, the purpose of this paper is to analyze the Goos-Hnchen shift based on near-zero-refractive-index material. In the paper, the photonic crystal with specific parameter is used to simulate the near-zero-refractive-index material, and the measurement in the simulation is based on finite difference time domain. We approach the issue by studying whether and how the wavelength and temperature will affect the Goos-Hnchen shift based on near-zero-refractive-index material. After the simulation at different wavelengths and temperatures based on the incidence angle which gives rise to total reflection, the results of the simulation reveal that when wavelength is between 1.648a and 1.848a (not including 1.848a), the Goos-Hnchen shift is positive and increases gradually, and the total reflection angle decreases. When wavelength is between 1.848a and 2.048a, the total reflection angle increases. When the wavelength is in a range between 1.848a and 1.858a, the Goos-Hnchen shift is negative. When the wavelength is above 1.858a, the Goos-Hnchen shift is negative and increases gradually. When the temperature increases from 0 ℃ to 100 ℃, the Goose-Hnchen shift is unsimilar to the situation of different wavelengths, and fluctuates in the interval at wavelengths ranging from 1.648a to 1.848a, and the total reflection angle increases gradually. Goose-Hnchen shift decreases at a wavelength of 2.048, and the total reflection angle decreases gradually, but a little. Based on the simulation result, it is concluded that the variations of the wavelength and temperature will affect the Goos-Hnchen shift based on near-zero-refractive-index material, and the effective value is in a range from about 1a to 4a, which is not a small value to the shift especially in some precision instruments. As a result, the changes of wavelength and temperature should be taken into consideration, when Goos-Hnchen shift based on near-zero-refractive-index materials is measured or used in research. These findings are expected to be instructive for device design and nano-optics.
-
Keywords:
- Goos-H /
- nchen shift /
- zero-refractive-index materials
[1] Goos F, Hanchen H 1947 Ann. Phys. 436 333
[2] Seshadri S R 1988 J. Opt. Soc. Am. 5 583
[3] Tran N H, Dutriaux L, Balcou P, Floch A L, Bretenaker F 1995 Opt. Lett. 20 1233
[4] Alishahi F, Mehrany K 2010 Opt. Lett. 35 1759
[5] Fang Y T, Liu Y Z, Shen T G 2006 Chin. Opt. Lett. 4 230
[6] Soboleva I V, Moskalenko V V, Fedyanin A A 2012 Phys. Rev. Lett. 108 123901
[7] Berman P B 2002 Phys. Rev. E 66 067603
[8] Xiang Y, Dai X, Wen S 2007 Appl. Phys. A 87 285
[9] Zhou L M, Zou C L, Han Z F 2011 Opt. Lett. 36 624
[10] Lin S Y, Hietala V M, Wang L, Jones E 1996 Opt. Lett. 21 1771
[11] Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2011 Photonic Crystals: Molding the Flow of Light (Princeton: Princeton university press) pp66-93
[12] Notomi M 2000 Phys. Rev. B 62 10696
[13] Maigyte L, Purlys V, Trul J, Peckus M, Cojocaru C, Gailevicius D, Mlinauska M, Staliuns K 2013 Opt. Lett. 38 2376
[14] Luo C, Johnson S G, Joannopoulos J D, Pendry J B 2003 Phys. Rev. B 68 045115
[15] Felbacq D, Moreau A, Smaali R 2003 Opt. Lett. 28 1633
[16] Shadrivov I V, Zharov A A, Kivshar Y S 2003 Appl. Phys. Lett. 83 2713
[17] Zhou L M, Zou C L, Han Z F, Guo G C, Sun F W 2011 Opt. Lett. 36 624
[18] Rechtsman M C, Kartashov Y V, Setzpfandt F, Trompeter H, Torner L, Pertsch T, Peschel U, Szameit A 2011 Opt. Lett. 36 4446
[19] Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nature Mater. 10 582
[20] Huang X Q, Chen Z T {2015 Acta Phys. Sin. 64 184208 (in Chinese) [黄学勤, 陈子亭 2015 64 184208]
[21] Geng T, Wu N, Dong X M, Gao X M 2015 Acta Phys. Sin. 64 154210 (in Chinese) [耿滔, 吴娜, 董祥美, 高秀敏 2015 64 154210]
[22] Mocella V, Cabrini S, Chang A S P, Dardano P, Moretti L, Rendina I, Olynick D, Harteneck B, Dhuey S 2009 Phys. Rev. Lett. 102 133902
[23] Lin H X, Yu X N, Liu S Y 2015 Acta Phys. Sin. 64 034203 (in Chinese) [林海笑, 俞昕宁, 刘士阳 2015 64 034203]
[24] Suchowski H, O'Brien K, Wong Z J, Salandrino A, Yin X, Zhang X {2013 Science 342 1233
-
[1] Goos F, Hanchen H 1947 Ann. Phys. 436 333
[2] Seshadri S R 1988 J. Opt. Soc. Am. 5 583
[3] Tran N H, Dutriaux L, Balcou P, Floch A L, Bretenaker F 1995 Opt. Lett. 20 1233
[4] Alishahi F, Mehrany K 2010 Opt. Lett. 35 1759
[5] Fang Y T, Liu Y Z, Shen T G 2006 Chin. Opt. Lett. 4 230
[6] Soboleva I V, Moskalenko V V, Fedyanin A A 2012 Phys. Rev. Lett. 108 123901
[7] Berman P B 2002 Phys. Rev. E 66 067603
[8] Xiang Y, Dai X, Wen S 2007 Appl. Phys. A 87 285
[9] Zhou L M, Zou C L, Han Z F 2011 Opt. Lett. 36 624
[10] Lin S Y, Hietala V M, Wang L, Jones E 1996 Opt. Lett. 21 1771
[11] Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2011 Photonic Crystals: Molding the Flow of Light (Princeton: Princeton university press) pp66-93
[12] Notomi M 2000 Phys. Rev. B 62 10696
[13] Maigyte L, Purlys V, Trul J, Peckus M, Cojocaru C, Gailevicius D, Mlinauska M, Staliuns K 2013 Opt. Lett. 38 2376
[14] Luo C, Johnson S G, Joannopoulos J D, Pendry J B 2003 Phys. Rev. B 68 045115
[15] Felbacq D, Moreau A, Smaali R 2003 Opt. Lett. 28 1633
[16] Shadrivov I V, Zharov A A, Kivshar Y S 2003 Appl. Phys. Lett. 83 2713
[17] Zhou L M, Zou C L, Han Z F, Guo G C, Sun F W 2011 Opt. Lett. 36 624
[18] Rechtsman M C, Kartashov Y V, Setzpfandt F, Trompeter H, Torner L, Pertsch T, Peschel U, Szameit A 2011 Opt. Lett. 36 4446
[19] Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nature Mater. 10 582
[20] Huang X Q, Chen Z T {2015 Acta Phys. Sin. 64 184208 (in Chinese) [黄学勤, 陈子亭 2015 64 184208]
[21] Geng T, Wu N, Dong X M, Gao X M 2015 Acta Phys. Sin. 64 154210 (in Chinese) [耿滔, 吴娜, 董祥美, 高秀敏 2015 64 154210]
[22] Mocella V, Cabrini S, Chang A S P, Dardano P, Moretti L, Rendina I, Olynick D, Harteneck B, Dhuey S 2009 Phys. Rev. Lett. 102 133902
[23] Lin H X, Yu X N, Liu S Y 2015 Acta Phys. Sin. 64 034203 (in Chinese) [林海笑, 俞昕宁, 刘士阳 2015 64 034203]
[24] Suchowski H, O'Brien K, Wong Z J, Salandrino A, Yin X, Zhang X {2013 Science 342 1233
Catalog
Metrics
- Abstract views: 7646
- PDF Downloads: 494
- Cited By: 0