-
针对传统单结GaN基高电子迁移率晶体管器件性能受电流崩塌效应和自加热效应限制的困境, 对新型AlGaN/GaN/InGaN/GaN双异质结高电子迁移率晶体管的直流性质展开了系统研究. 采用基于热电子效应和自加热效应的流体动力模型,研究了器件在不同偏压下电流崩塌和负微分电导效应与 GaN沟道层厚度的相关.研究发现具有高势垒双异质的沟道层能更好地将电子限制在沟道中, 显著减小高电场下热电子从沟道层向GaN缓冲层的穿透能力.提高GaN沟道层厚度可以有效抑制电流崩塌 和和负微分输出电导,进而提高器件在高场作用下的性能.所得结果 为进一步优化双异质结高电子迁移率晶体管结构提供了新思路,可促进新型GaN高电子迁移率晶体管器件 在高功率、高频和高温等无线通讯领域内的广泛应用.
-
关键词:
- 双异质结高电子迁移率晶体管 /
- 电流崩塌 /
- 热电子效应 /
- 自加热效应
A series of AlGaN/GaN/InGaN/GaN double-heterojunction high-electron-mobility-transistors (DH-HEMT) is fabricated with GaN channel layer thicknesses from 6 nm to 20 nm by two-dimensional (2D) numerical simulations. A new idea for optimizating of DH-HEMT structure is proposed. The hot electron effect and self-heating effect are investigated by using hydrodynamic model. Current collapse and negative differential conductance are observed to be directly relevant to GaN channel layer thickness. DH-HEMT with thicker GaN channel layer can confine electrons better in channel, which significantly diminishes the penetration ability of hot electrons from channel layer to buffer layer under high voltage. Increasing the thickness of GaN channel layer appropriately can effectively restrict current collapse and negative differential conductance, and consequently improve device performance under high voltage condition.-
Keywords:
- double-heterojunction high-electron-mobility-transistors /
- current collapse /
- hot electron effect /
- self-heating effect
[1] Mishra U K, Parikh P, Wu Y F 2002 Proc. IEEE 90 1022
[2] Liberis J, Matulionienė I, Matulionis A, Šermukšnis E, Xie J, Leach J H, Morkoc H 2009 Phys. Stat. Sol. A 206 1385
[3] Liu J, Zhou Y, Zhu J, Lau K M, Chen K J 2006 IEEE Electr. Dev. Lett. 27 10
[4] Medjdoub F, Derluyn J, Cheng K, Leys M, Degroote S, Marcon D, Visalli D, van Hove M, Germain M, Borghs G 2010 IEEE Electr. Dev. Lett. 31 111
[5] Brown D F, Shinohara K, Williams A, Milosavljevic I, Grabar R, Hashimoto P, Willadsen P J, Schmitz A, Corrion A L, Kim S, Regan D, Butler C M, Burnham S D, Micovic M 2011 IEEE T. Electron. Dev. 58 1063
[6] Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Yuan H J 2006 Appl. Phys. Lett. 89 243501
[7] Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Ye P D 2006 J. Appl. Phys. 100 074501
[8] Faqir M, Bouya M, Malbert N, Labat N, Carisetti D, Lambert B, Verzellesi G, Fantini F 2010 Microelectron. Reliab. 50 1520
[9] Hu W D, Chen X S, Yin F, Zhang J B, Lu W 2009 J. Appl. Phys. 105 084502
[10] Binari S C, Ikossi K, Roussos J A, Kruppa W, Doewon P, Dietrich H B, Koleske D D, Wickenden A E, Henry R L 2001 IEEE T. Electron. Dev. 48 465
[11] Binari S C, Klein P B, Kazior T E 2002 Proc. IEEE 90 1048
[12] Vetury R, Zhang N Q, Keller S, Mishra U K 2001 IEEE T. Electron. Dev. 48 560
[13] Hu X, Koudymov A, Simin G, Yang J, Khan M A, Tarakji A, Shur M S, Gaska R 2001 Appl. Phys. Lett. 79 2832
[14] Kuzmik J, Javorka R, Alam A, Marso M, Heuken M, Kordos P 2002 IEEE T. Electron. Dev. 49 1496
[15] Wu X H, Brown L M, Kapolnek D, Keller S, Keller B, DenBaars S P, Speck J S 1996 J. Appl. Phys. 80 3228
[16] Klein P B, Binari S C, Ikossi K, Wickenden A E, Koleske D D, Henry R L 2001 Appl. Phys. Lett. 79 3527
[17] Tang J, Wang X L, Chen T S, Xiao H L, Ran J X, Zhang M L, Hu G X, Feng C, Hou Q, Wei M, Li J M, Wang Z G 2008 9th International Conference on Solid-State and Integrated-Circuit Technology Beijing, China, 20-23 Oct. 2008 p1114
[18] Zhang S, Li M C, Feng Z H, Liu B, Yin J Y, Zhao L C 2009 Appl. Phys. Lett. 95 212101
[19] Faraclas E W, Anwar A F M 2006 Solid State Electron. 50 1051
[20] Wang L, Hu W D, Chen X S, Lu W 2010 Acta Phys. Sin. 59 5730 (in Chinese) [王林, 胡伟达, 陈效双, 陆卫 2010 59 5730]
[21] Wang L, Hu W D, Chen X S, Lu W 2010 J. Appl. Phys. 108 054501
[22] Liu J, Zhou Y, Zhu J, Cai Y, Lau K M, Chen K J 2007 IEEE T. Electron. Dev. 54 2
[23] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222
[24] Braga N, Mickevicius R, Gaska R, Hu X, Shur M S, Khan M A, Simin G, Yang J 2004 J. Appl. Phys. 95 6409
[25] Wang L, Hu W D, Chen X S, Lu W 2012 J. Electron. Mater. 41 2130
[26] Barry E A, Kim K W, Kochelap V A 2002 Appl. Phys. Lett. 80 2317
[27] Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE T. Electron. Dev. 59 1393
-
[1] Mishra U K, Parikh P, Wu Y F 2002 Proc. IEEE 90 1022
[2] Liberis J, Matulionienė I, Matulionis A, Šermukšnis E, Xie J, Leach J H, Morkoc H 2009 Phys. Stat. Sol. A 206 1385
[3] Liu J, Zhou Y, Zhu J, Lau K M, Chen K J 2006 IEEE Electr. Dev. Lett. 27 10
[4] Medjdoub F, Derluyn J, Cheng K, Leys M, Degroote S, Marcon D, Visalli D, van Hove M, Germain M, Borghs G 2010 IEEE Electr. Dev. Lett. 31 111
[5] Brown D F, Shinohara K, Williams A, Milosavljevic I, Grabar R, Hashimoto P, Willadsen P J, Schmitz A, Corrion A L, Kim S, Regan D, Butler C M, Burnham S D, Micovic M 2011 IEEE T. Electron. Dev. 58 1063
[6] Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Yuan H J 2006 Appl. Phys. Lett. 89 243501
[7] Hu W D, Chen X S, Quan Z J, Xia C S, Lu W, Ye P D 2006 J. Appl. Phys. 100 074501
[8] Faqir M, Bouya M, Malbert N, Labat N, Carisetti D, Lambert B, Verzellesi G, Fantini F 2010 Microelectron. Reliab. 50 1520
[9] Hu W D, Chen X S, Yin F, Zhang J B, Lu W 2009 J. Appl. Phys. 105 084502
[10] Binari S C, Ikossi K, Roussos J A, Kruppa W, Doewon P, Dietrich H B, Koleske D D, Wickenden A E, Henry R L 2001 IEEE T. Electron. Dev. 48 465
[11] Binari S C, Klein P B, Kazior T E 2002 Proc. IEEE 90 1048
[12] Vetury R, Zhang N Q, Keller S, Mishra U K 2001 IEEE T. Electron. Dev. 48 560
[13] Hu X, Koudymov A, Simin G, Yang J, Khan M A, Tarakji A, Shur M S, Gaska R 2001 Appl. Phys. Lett. 79 2832
[14] Kuzmik J, Javorka R, Alam A, Marso M, Heuken M, Kordos P 2002 IEEE T. Electron. Dev. 49 1496
[15] Wu X H, Brown L M, Kapolnek D, Keller S, Keller B, DenBaars S P, Speck J S 1996 J. Appl. Phys. 80 3228
[16] Klein P B, Binari S C, Ikossi K, Wickenden A E, Koleske D D, Henry R L 2001 Appl. Phys. Lett. 79 3527
[17] Tang J, Wang X L, Chen T S, Xiao H L, Ran J X, Zhang M L, Hu G X, Feng C, Hou Q, Wei M, Li J M, Wang Z G 2008 9th International Conference on Solid-State and Integrated-Circuit Technology Beijing, China, 20-23 Oct. 2008 p1114
[18] Zhang S, Li M C, Feng Z H, Liu B, Yin J Y, Zhao L C 2009 Appl. Phys. Lett. 95 212101
[19] Faraclas E W, Anwar A F M 2006 Solid State Electron. 50 1051
[20] Wang L, Hu W D, Chen X S, Lu W 2010 Acta Phys. Sin. 59 5730 (in Chinese) [王林, 胡伟达, 陈效双, 陆卫 2010 59 5730]
[21] Wang L, Hu W D, Chen X S, Lu W 2010 J. Appl. Phys. 108 054501
[22] Liu J, Zhou Y, Zhu J, Cai Y, Lau K M, Chen K J 2007 IEEE T. Electron. Dev. 54 2
[23] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222
[24] Braga N, Mickevicius R, Gaska R, Hu X, Shur M S, Khan M A, Simin G, Yang J 2004 J. Appl. Phys. 95 6409
[25] Wang L, Hu W D, Chen X S, Lu W 2012 J. Electron. Mater. 41 2130
[26] Barry E A, Kim K W, Kochelap V A 2002 Appl. Phys. Lett. 80 2317
[27] Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE T. Electron. Dev. 59 1393
计量
- 文章访问数: 7518
- PDF下载量: 725
- 被引次数: 0