Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-energy proton radiation effect of Gallium nitride power device with enhanced Cascode structure

Bai Ru-Xue Guo Hong-Xia Zhang Hong Wang Di Zhang Feng-Qi Pan Xiao-Yu Ma Wu-Ying Hu Jia-Wen Liu Yi-Wei Yang Ye Lyu Wei Wang Zhong-Ming

Citation:

High-energy proton radiation effect of Gallium nitride power device with enhanced Cascode structure

Bai Ru-Xue, Guo Hong-Xia, Zhang Hong, Wang Di, Zhang Feng-Qi, Pan Xiao-Yu, Ma Wu-Ying, Hu Jia-Wen, Liu Yi-Wei, Yang Ye, Lyu Wei, Wang Zhong-Ming
PDF
HTML
Get Citation
  • To ascertain the damage mechanism caused by high-energy proton irradiation to AlGaN/GaN power devices of enhanced Cascode structures, we study the radiation effect of enhanced Cascode structure and depletion AlGaN/GaN power devices by using 60 MeV energy protons in this work. In the case of proton injection reaching 1×1012 p/cm2, the experimental results show that the threshold voltage of the Cascode type device is negatively drifted, the transconductance decreases, and the peak leakage current increases. The threshold voltage decreases from 4.2 V to 3.0 V, with a decrement of 1.2 V, and the peak transconductance value decreases from 0.324 S/mm to 0.260 S/mm, with a decrement of about 19.75%. There is no significant change after the conventional depleted AlGaN/GaN device has been irradiated. The Cascode-type AlGaN/GaN power device is more sensitive to proton irradiation than the depletion-type AlGaN/GaN device. The Cascode-type device is sensitive to proton irradiation because of its structure connected to a silicon-based MOS tube. Proton irradiation causes the silicon-based MOS gate oxide layer to generate a large amount of net positive charge, induces an ionization damage effect, and causes threshold voltage to negatively drift and the gate leakage current to increase. The equivalent 60 MeV energy protons and cumulative injection of 1×1012 p/cm2 dose of the $ {}_{}{}^{60}\rm{C}\rm{o}~\rm{\gamma } $ radiation device is used to obtain the ionization damage effect. It is found that after being irradiated by the equivalent dose ${}_{}{}^{60}\rm{C}\rm{o}~\rm{\gamma }$ ray , the device has the threshold voltage decreasing from 4.15 V to 2.15 V, with a negative drift of 2 V; transconductance peak decreases from 0.335 S/mm to 0.300 S/mm, with an approximate decrement of 10.45%. The degradation of the electrical properties of the device after being irradiated by ${}_{}{}^{60}\rm{C}\rm{o}~\rm{\gamma }$ ray is consistent with the degradation law after being irradiated by high-energy protons. In order to further verify the experimental accuracy and conclusions, the ionization energy loss and non-ionization energy loss induced by radiation in the device are obtained by Monte Carlo simulation. The simulation results show that the ionization energy loss induces silicon-based MOS to generate oxide trap charge and interfacial state trap charge, which is mainly responsible for the performance degradation of AlGaN/GaN HEMT power devices with enhanced Cascode structure.
      Corresponding author: Guo Hong-Xia, guohxnint@126.com
    [1]

    Chen Z W, Yue S Z, Peng C, Zhang Z G, Liu C, Wang L, Huang Y M, Huang Y, He Y J, Zhong X L, Lei Z F 2021 IEEE Trans. Nucl. Sci. 64 118

    [2]

    Chen K J, Häberlan O, Lidwo A, Tsai C L, Ueda T, Uemoto Y, Wu Y 2017 IEEE Trans. Electron. Dev. 64 779Google Scholar

    [3]

    Karmarkar A P, Jun B, Fleetwood D M, Schrimpf R D, Weller R A, White B D, Brillson L J, Mishra U K 2004 IEEE Trans. Nucl. Sci. 51 3801Google Scholar

    [4]

    张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 67 076801Google Scholar

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar

    [5]

    Roy T, Zhang E X, Puzyrev Y S, Fleetwood D M, Schrimpf R D, Choi B K, Hmelo A B, Pantelides S T 2001 IEEE Trans. Nucl. Sci. 57 3060

    [6]

    Wu Y F, Kapolnek D, Ibbetson J P, Parikh P, Keller B P, Mishra U K 2001 IEEE Trans. Electron. Dev. 48 586Google Scholar

    [7]

    Jun B, Subramanian S 2001 IEEE Trans. Electron. Dev. 48 2250

    [8]

    Gu W P, Hao Y, Yang L A 2010 Phys. Status Solidi C 7 1991Google Scholar

    [9]

    Keum D M, Sung H, Kim H 2017 IEEE Trans. Nucl. Sci. 64 258Google Scholar

    [10]

    Wan X, Baker O K, McCurdy M W, Zhang E X, Zafrani M, Wainwright S P, Xu J, Bo H L, Reed R A, Fleedwood D M, Ma T P 2017 IEEE Trans. Nucl. Sci. 64 253Google Scholar

    [11]

    吕玲, 林正兆, 郭红霞, 潘霄宇, 严肖瑶 2021 现代应用物理 12 603

    Lv L, Lin Z Z, Guo H X, Pan X Y, Yan X Y 2021 Modern Appl. Phys. 12 603

    [12]

    Floriduz A, Devine J D 2020 Microelectron. Reliab. 110 113656Google Scholar

    [13]

    Meneghini M, Tajalli A, Moens P, Banerjee A, Stockman A, Tack M, Gerardin S, Bagatin M, Paccagnella A, Zanoni E, Meneghesso G 2017 IEEE Xplore. Res. Appl. 17 753

    [14]

    Keum D M, Cha H, Kim H 2015 IEEE Trans. Nucl. Sci. 62 3362Google Scholar

    [15]

    Aditya K, Silvestri M, Beck M J, Dixit S K, Ronald D, Reed R A, Fleetwood D M, Shen L, Mishra U K 2009 IEEE Trans. Nucl. Sci. 56 3192Google Scholar

    [16]

    Patrick E, Law M E, Lu L, Cuervo C V, Xi Y Y, Ren F, Pearton S J 2013 IEEE Trans. Nucl. Sci. 60 4103Google Scholar

    [17]

    Kim H Y, Lo C F, Liu L, Ren F, Kim J, Pearton J S 2012 Appl. Phys. Lett. 100 1791

    [18]

    伍文俊, 兰雪梅 2020 电子技术应用 1 22

    Wu W J, Lan X M 2020 Appl. Electron. Tech. 1 22

    [19]

    施敏, 李明逵 著 (王明湘, 赵鹤鸣 译) 2021 半导体器件物理与工艺 (第三版) (苏州: 苏州大学出版社) 第170—176页

    Shi M, Li M K (translated by Wang M X, Zhao H M) 2021 Semiconductor Devices Physics and Technology (3rd Ed.) (Suzhou: Soochow University Press) pp170–176 (in Chinese)

    [20]

    唐常钦, 王多为, 龚敏, 马瑶, 杨治美 2021 电子与封装 21 080402

    Tan C Q, Wang D W, Gong M, Ma Y, Yang Z M 2021 Electron. Packag. 21 080402

    [21]

    Schwank J R, Shaneyfelt M R, Feeltwood D M 2008 IEEE Trans. Nucl. Sci. 55 1833Google Scholar

    [22]

    Rajan S, Xing H, Denbaars S, Jena D 2004 Appl. Phys. Lett. 84 1591Google Scholar

    [23]

    高文钰, 严荣良, 余学峰, 任迪远, 范隆 1992 半导体学报 13 475

    Gao W Y, Yan R L, Yu X F, Ren D Y, Fan L 1992 J. Semiconduct. 13 475

    [24]

    吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃 2012 61 057202Google Scholar

    Lv L, Zhang J C, Li L, Ma X H, Cao Y R, Hao Y 2012 Acta Phys. Sin. 61 057202Google Scholar

    [25]

    Smith M D, O’ Mahony D, Vitobello F, Muschitiello M, Costantino A, Barnes A R, Parbrook P J 2016 Semicond. Sci. Technol. 31 025008Google Scholar

  • 图 1  增强型Cascode GaN HEMT器件结构图

    Figure 1.  Structure diagram of enhanced Cascode GaN HEMT device.

    图 2  增强型Cascode结构氮化镓器件开封装图

    Figure 2.  Internal equivalent circuit diagram of enhanced Cascode structure.

    图 3  质子辐照前后增强型Cascode结构AlGaN/GaN HEMT器件阈值电压及跨导曲线

    Figure 3.  Threshold voltage and transconductance curve of AlGaN/GaN HEMT devices of enhanced Cascode structure before and after proton irradiation.

    图 4  质子辐照前后增强型Cascode结构AlGaN/GaN HEMT器件栅泄漏电流曲线

    Figure 4.  Gate leakage current profile of AlGaN/GaN HEMT devices with enhanced Cascode structure before and after proton irradiation.

    图 5  质子辐照前后耗尽型AlGaN/GaN HEMT器件阈值电压及跨导曲线

    Figure 5.  Threshold voltage and transconductance curve of depleted AlGaN/GaN HEMT devices before and after proton irradiation.

    图 6  质子辐照前后耗尽型AlGaN/GaN HEMT器件栅泄漏电流曲线

    Figure 6.  Gate leakage current profile of depleted AlGaN/GaN HEMT devices before and after proton irradiation.

    图 7  ${}_{}{}^{60}\rm{C}\rm{o}~\rm{\gamma }$射线辐照前后增强型Cascode结构AlGaN/GaN HEMT器件阈值电压及跨导曲线

    Figure 7.  Threshold voltage and transconductance curve of AlGaN/GaN HEMT devices of enhanced Cascode structure before and after ${}_{}{}^{60}\rm{C}\rm{o}~\rm{\gamma }$-ray irradiation.

    图 8  增强型Cascode结构内部等效电路图

    Figure 8.  Internal equivalent circuit diagram of enhanced Cascode structure.

    图 9  器件切片分析结果示意图 (a)增强型硅基MOS管; (b)耗尽型GaN晶体管

    Figure 9.  Schematic diagram of device slice analysis results: (a) Reinforced silicon-based MOS transistors; (b) depletion-type GaN transistors.

    图 10  级联硅基MOS管中的电离能损和非电离能损随深度的变化

    Figure 10.  Ionization and non-ionization loss in cascaded silicon MOS transistors vary with depth.

    图 11  级联耗尽型AlGaN/GaN HEMT中的电离能损和非电离能损随深度的变化

    Figure 11.  Ionization and non-ionization losses in cascaded depleted AlGaN/GaN HEMT vary with depth.

    Baidu
  • [1]

    Chen Z W, Yue S Z, Peng C, Zhang Z G, Liu C, Wang L, Huang Y M, Huang Y, He Y J, Zhong X L, Lei Z F 2021 IEEE Trans. Nucl. Sci. 64 118

    [2]

    Chen K J, Häberlan O, Lidwo A, Tsai C L, Ueda T, Uemoto Y, Wu Y 2017 IEEE Trans. Electron. Dev. 64 779Google Scholar

    [3]

    Karmarkar A P, Jun B, Fleetwood D M, Schrimpf R D, Weller R A, White B D, Brillson L J, Mishra U K 2004 IEEE Trans. Nucl. Sci. 51 3801Google Scholar

    [4]

    张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 67 076801Google Scholar

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar

    [5]

    Roy T, Zhang E X, Puzyrev Y S, Fleetwood D M, Schrimpf R D, Choi B K, Hmelo A B, Pantelides S T 2001 IEEE Trans. Nucl. Sci. 57 3060

    [6]

    Wu Y F, Kapolnek D, Ibbetson J P, Parikh P, Keller B P, Mishra U K 2001 IEEE Trans. Electron. Dev. 48 586Google Scholar

    [7]

    Jun B, Subramanian S 2001 IEEE Trans. Electron. Dev. 48 2250

    [8]

    Gu W P, Hao Y, Yang L A 2010 Phys. Status Solidi C 7 1991Google Scholar

    [9]

    Keum D M, Sung H, Kim H 2017 IEEE Trans. Nucl. Sci. 64 258Google Scholar

    [10]

    Wan X, Baker O K, McCurdy M W, Zhang E X, Zafrani M, Wainwright S P, Xu J, Bo H L, Reed R A, Fleedwood D M, Ma T P 2017 IEEE Trans. Nucl. Sci. 64 253Google Scholar

    [11]

    吕玲, 林正兆, 郭红霞, 潘霄宇, 严肖瑶 2021 现代应用物理 12 603

    Lv L, Lin Z Z, Guo H X, Pan X Y, Yan X Y 2021 Modern Appl. Phys. 12 603

    [12]

    Floriduz A, Devine J D 2020 Microelectron. Reliab. 110 113656Google Scholar

    [13]

    Meneghini M, Tajalli A, Moens P, Banerjee A, Stockman A, Tack M, Gerardin S, Bagatin M, Paccagnella A, Zanoni E, Meneghesso G 2017 IEEE Xplore. Res. Appl. 17 753

    [14]

    Keum D M, Cha H, Kim H 2015 IEEE Trans. Nucl. Sci. 62 3362Google Scholar

    [15]

    Aditya K, Silvestri M, Beck M J, Dixit S K, Ronald D, Reed R A, Fleetwood D M, Shen L, Mishra U K 2009 IEEE Trans. Nucl. Sci. 56 3192Google Scholar

    [16]

    Patrick E, Law M E, Lu L, Cuervo C V, Xi Y Y, Ren F, Pearton S J 2013 IEEE Trans. Nucl. Sci. 60 4103Google Scholar

    [17]

    Kim H Y, Lo C F, Liu L, Ren F, Kim J, Pearton J S 2012 Appl. Phys. Lett. 100 1791

    [18]

    伍文俊, 兰雪梅 2020 电子技术应用 1 22

    Wu W J, Lan X M 2020 Appl. Electron. Tech. 1 22

    [19]

    施敏, 李明逵 著 (王明湘, 赵鹤鸣 译) 2021 半导体器件物理与工艺 (第三版) (苏州: 苏州大学出版社) 第170—176页

    Shi M, Li M K (translated by Wang M X, Zhao H M) 2021 Semiconductor Devices Physics and Technology (3rd Ed.) (Suzhou: Soochow University Press) pp170–176 (in Chinese)

    [20]

    唐常钦, 王多为, 龚敏, 马瑶, 杨治美 2021 电子与封装 21 080402

    Tan C Q, Wang D W, Gong M, Ma Y, Yang Z M 2021 Electron. Packag. 21 080402

    [21]

    Schwank J R, Shaneyfelt M R, Feeltwood D M 2008 IEEE Trans. Nucl. Sci. 55 1833Google Scholar

    [22]

    Rajan S, Xing H, Denbaars S, Jena D 2004 Appl. Phys. Lett. 84 1591Google Scholar

    [23]

    高文钰, 严荣良, 余学峰, 任迪远, 范隆 1992 半导体学报 13 475

    Gao W Y, Yan R L, Yu X F, Ren D Y, Fan L 1992 J. Semiconduct. 13 475

    [24]

    吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃 2012 61 057202Google Scholar

    Lv L, Zhang J C, Li L, Ma X H, Cao Y R, Hao Y 2012 Acta Phys. Sin. 61 057202Google Scholar

    [25]

    Smith M D, O’ Mahony D, Vitobello F, Muschitiello M, Costantino A, Barnes A R, Parbrook P J 2016 Semicond. Sci. Technol. 31 025008Google Scholar

  • [1] Chen Yan-Hong, Wang Zhao, Zhou Ze-Xian, Tao Ke-Wei, Jin Xue-Jian, Shi Lu-Lin, Wang Guo-Dong, Yu Pei, Lei Yu, Wu Xiao-Xia, Cheng Rui, Yang Jie. Diagnosis of bound electron density by measuring energy loss of proton beam in partially ionized plasma target. Acta Physica Sinica, 2024, 73(7): 073401. doi: 10.7498/aps.73.20231736
    [2] Xue Bin-Tao, Zhang Li-Min, Liang Yong-Qi, Liu Ning, Wang Ding-Ping, Chen Liang, Wang Tie-Shan. Proton irradiation induced damage effects in CH3NH3PbI3-based perovskite solar cells. Acta Physica Sinica, 2023, 72(13): 138802. doi: 10.7498/aps.72.20222100
    [3] Huang Xing-Jie, Xing Yan-Hui, Yu Guo-Hao, Song Liang, Huang Rong, Huang Zeng-Li, Han Jun, Zhang Bao-Shun, Fan Ya-Ming. Study on H plasma treatment enhanced p-GaN gate AlGaN/GaN HEMT with block layer. Acta Physica Sinica, 2022, 71(10): 108501. doi: 10.7498/aps.71.20212192
    [4] Fu Jing, Cai Yu-Long, Li Yu-Dong, Feng Jie, Wen Lin, Zhou Dong, Guo Qi. Single event transient effect of frontside and backside illumination image sensors under proton irradiation. Acta Physica Sinica, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [5] Liu Ye, Guo Hong-Xia, Ju An-An, Zhang Feng-Qi, Pan Xiao-Yu, Zhang Hong, Gu Zhao-Qiao, Liu Yi-Tian, Feng Ya-Hui. Data inversion and erroneous annealing of floating gate cell under proton radiation. Acta Physica Sinica, 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [6] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin, Shen Wei-Zu. Effect of proton irradiation on microstructure evolution of permanent magnet. Acta Physica Sinica, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [7] Zhang Ning, Zhang Xin, Yang Ai-Xiang, Ba De-Dong, Feng Zhan-Zu, Chen Yi-Feng, Shao Jian-Xiong, Chen Xi-Meng. Damage effects of proton beam irradiation on single layer graphene. Acta Physica Sinica, 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [8] Zeng Jun-Zhe, Li Yu-Dong, Wen Lin, He Cheng-Fa, Guo Qi, Wang Bo, Maria, Wei Yin, Wang Hai-Jiao, Wu Da-You, Wang Fan, Zhou Hang. Effects of proton and neutron irradiation on dark signal of CCD. Acta Physica Sinica, 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [9] Yang Jian-Qun, Li Xing-Ji, Ma Guo-Liang, Liu Chao-Ming, Zou Meng-Nan. Effect of 170 keV proton irradiation on structure and electrical conductivity of multi-walled carbon nanotubes film. Acta Physica Sinica, 2015, 64(13): 136401. doi: 10.7498/aps.64.136401
    [10] Zeng Jun-Zhe, He Cheng-Fa, Li Yu-Dong, Guo Qi, Wen Lin, Wang Bo, Maria, Wang Hai-Jiao. Particle transport simulation and effect analysis of CCD irradiated by protons. Acta Physica Sinica, 2015, 64(11): 114214. doi: 10.7498/aps.64.114214
    [11] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [12] Zhu Jin-Hui, Wei Yuan, Xie Hong-Gang, Niu Sheng-Li, Huang Liu-Xing. Numerical investigation of non-ionizing energy loss of proton at an energy range of 300 eV to 1 GeV in silicon. Acta Physica Sinica, 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [13] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [14] Lü Ling, Zhang Jin-Cheng, Li Liang, Ma Xiao-Hua, Cao Yan-Rong, Hao Yue. Effects of 3 MeV proton irradiations on AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [15] Wang Chong, Quan Si, Ma Xiao-Hua, Hao Yue, Zhang Jin-Cheng, Mao Wei. High temperature annealing of enhancement-mode AlGaN/GaN high-electron-mobility transistors. Acta Physica Sinica, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [16] Zhao Hui-Jie, He Shi-Yu, Sun Yan-Zheng, Sun Qiang, Xiao Zhi-Bin, Lü Wei, Huang Cai-Yong, Xiao Jing-Dong, Wu Yi-Yong. Effect of 100 keV proton irradiation on photoemission of GaAs/Ge space solar cells. Acta Physica Sinica, 2009, 58(1): 404-410. doi: 10.7498/aps.58.404
    [17] Tang Xin-Xin, Luo Wen-Yun, Wang Chao-Zhuang, He Xin-Fu, Zha Yuan-Zi, Fan Sheng, Huang Xiao-Long, Wang Chuan-Shan. Non-ionizing energy loss of low energy proton in semiconductor materials Si and GaAs. Acta Physica Sinica, 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
    [18] Fan Xian-Hong, Li Min, Ni Qi-Liang, Liu Shi-Jie, Wang Xiao-Guang, Chen Bo. Change of reflectivity of Mo/Si multilayer irradiated by proton. Acta Physica Sinica, 2008, 57(10): 6494-6499. doi: 10.7498/aps.57.6494
    [19] Fan Xian-Hong, Chen Bo, Guan Qing-Feng. The influence of proton irradiation on the microstructure of pure Al films. Acta Physica Sinica, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [20] Wei Qiang, Liu Hai, He Shi-Yu, Hao Xiao-Peng, Wei Long. Slow positron annihilation study of Al film reflector after proton irradiation. Acta Physica Sinica, 2006, 55(10): 5525-5530. doi: 10.7498/aps.55.5525
Metrics
  • Abstract views:  4914
  • PDF Downloads:  120
  • Cited By: 0
Publishing process
  • Received Date:  12 August 2022
  • Accepted Date:  31 August 2022
  • Available Online:  24 December 2022
  • Published Online:  05 January 2023

/

返回文章
返回
Baidu
map