Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physical total energy based objective function model for sparse reconstruction

Ma Ge Hu Yue-Ming Gao Hong-Xia Li Zhi-Fu Guo Qi-Wei

Citation:

Physical total energy based objective function model for sparse reconstruction

Ma Ge, Hu Yue-Ming, Gao Hong-Xia, Li Zhi-Fu, Guo Qi-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Image reconstruction from sparse data is one of the key technologies in physical imaging, and it can often be mathematically described as an underdetermined linear inverse problem. Mathematical models for sparse reconstruction often choose the sparseness constraints or data fidelity term directly as objective functions. However, physics concepts and laws for these modeling or solving processes have never been explored. In this paper, sparse reconstruction is investigated for the first time from the perspective of physical motion. Firstly, a physical model is created to describe a particle motion in viscous medium, in which the particle gravity potential energy function is the norm of l2-l1 after the relaxation transformation. In discrete calculations, the particle displacement is determined by the corresponding iterative result, and its velocity can be described as the change between two adjacent iterations. Then, a new mathematical model based on the physical motion model is studied for sparse reconstruction, in which the total energy of particle is chosen as a new objective function and nonnegative displacements as constraints. This new model preserves sparse constrains and fidelity term of original l2-l1 model, and adds the constrains of deviations between two adjacent iterations so as to avoid oscillations caused by large deviations. Furthermore, a targeted gradient projection technique is adopted to solve such a reconstruction model, and its convergence is discussed as well. Especially in this algorithm, the gradient of this new objective function contains the iterative step of previous iteration, and such iterative steps play the role of physical inertia property in iterative process, which can effectively enlarge the iterative steps to accelerate the convergence and avoid local optima. Finally, two sets of experimental results are presented, including natural grayscale image reconstruction and micro focus X-ray defect detection in precision electronic package. The results demonstrate that the proposed method outperforms its competitors distinctly in time efficiency on the basis of guaranteeing the reconstruction quality. Additionally, on detecting internal defects in solder joint of integrated circuit, the proposed method is well performed in retaining edge details of the reconstructed micro focus X-ray images. Therefore, the proposed method can identify the solder joint internal defects more accurately and is more suitable to rapid and precise micro focus X-ray defect detection in industry.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61403146, 61573146) and the Fundamental Research Funds for the Central Universities of Ministry of Education, China (Grant No. x2zd/D2155120).
    [1]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese) [宁方立, 何碧静, 韦娟 2013 62 174212]

    [2]

    Gao H X, Wu L X, Xu H, Kang H, Hu Y M 2014 Optics and Precision Engineering 22 3100 (in Chinese) [高红霞, 吴丽璇, 徐寒, 康慧, 胡跃明 2014 光学精密工程 22 3100]

    [3]

    Gao H X, Chu F G, Wan Y Y, Liu J 2012 Semicond. Technol. 37 815 (in Chinese) [高红霞, 褚夫国, 万燕英, 刘骏 2012 半导体技术 37 815]

    [4]

    Ma Y, L Q B, Liu Y Y, Qian L L, Pei L L 2013 Acta Phys. Sin. 62 204202 (in Chinese) [马原, 吕群波, 刘扬阳, 钱路路, 裴琳琳 2013 62 204202]

    [5]

    Lustig M, Donoho D L, Santos J M, Pauly J M 2008 IEEE Signal Process. Mag. 25 72

    [6]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Signal Process. Mag. 25 83

    [7]

    Wang L Y, Liu H K, Li L, Yan B, Zhang H M, Cai A L, Chen J L, Hu G E 2014 Acta Phys. Sin. 63 208702 (in Chinese) [王林元, 刘宏奎, 李磊, 闫镔, 张瀚铭, 蔡爱龙, 陈建林, 胡国恩 2014 63 208702]

    [8]

    Wang L Y, Li L, Yan B, Jiang C S, Wang H Y, Bao S L 2010 Chin. Phys. B 19 088106

    [9]

    Sun Y L, Tao J X 2014 Chin. Phys. B 23 078703

    [10]

    Figueiredo M A T, Nowak R D 2003 IEEE Trans. Image Process. 12 906

    [11]

    Candes E, Romberg J, Tao T 2006 Commun. Pur. Appl. Math. 59 1207

    [12]

    Elad M, Matalon B, Zibulevsky M 2006 Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition New York, USA, June 17-22, 2006 p1924

    [13]

    Candes E J, Tao T 2005 IEEE Trans. Inf. Theory 51 4203

    [14]

    Chen S S, Donoho D L, Saunders M A 1998 SIAM J. Sci. Comput. 20 33

    [15]

    Kim S J, Koh K, Lustig M, Boyd S 2007 Proceedings of the 14th IEEE International Conference on Image Processing San Antonio, USA, September 16-19, 2007 p117

    [16]

    Figueiredo M A T, Nowak R D, Wright S J 2007 IEEE J. Sel. Topics Signal Process. 1 586

    [17]

    Daubechies I, Defrise M, Mol C D 2004 Commun. Pur. Appl. Math. 57 1413

    [18]

    Bioucas-Dias J M, Figueiredo M A T 2007 IEEE Trans. Image Process. 16 2992

    [19]

    Wright S J, Nowak R D, Figueiredo M A T 2009 IEEE Trans. Signal Process. 57 2479

    [20]

    Bonettini S, Zanella R, Zanni L 2009 Inverse Problems 25 015002

    [21]

    Bertsekas D P 1999 Nonlinear Programming (2nd Ed.) (Belmont: Athena Scientific) pp665-668

    [22]

    Nesterov Y 2004 IEEE Trans. Image Process. 13 600

    [23]

    Wang Z, Bovik A C, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process. 13 600

  • [1]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese) [宁方立, 何碧静, 韦娟 2013 62 174212]

    [2]

    Gao H X, Wu L X, Xu H, Kang H, Hu Y M 2014 Optics and Precision Engineering 22 3100 (in Chinese) [高红霞, 吴丽璇, 徐寒, 康慧, 胡跃明 2014 光学精密工程 22 3100]

    [3]

    Gao H X, Chu F G, Wan Y Y, Liu J 2012 Semicond. Technol. 37 815 (in Chinese) [高红霞, 褚夫国, 万燕英, 刘骏 2012 半导体技术 37 815]

    [4]

    Ma Y, L Q B, Liu Y Y, Qian L L, Pei L L 2013 Acta Phys. Sin. 62 204202 (in Chinese) [马原, 吕群波, 刘扬阳, 钱路路, 裴琳琳 2013 62 204202]

    [5]

    Lustig M, Donoho D L, Santos J M, Pauly J M 2008 IEEE Signal Process. Mag. 25 72

    [6]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Signal Process. Mag. 25 83

    [7]

    Wang L Y, Liu H K, Li L, Yan B, Zhang H M, Cai A L, Chen J L, Hu G E 2014 Acta Phys. Sin. 63 208702 (in Chinese) [王林元, 刘宏奎, 李磊, 闫镔, 张瀚铭, 蔡爱龙, 陈建林, 胡国恩 2014 63 208702]

    [8]

    Wang L Y, Li L, Yan B, Jiang C S, Wang H Y, Bao S L 2010 Chin. Phys. B 19 088106

    [9]

    Sun Y L, Tao J X 2014 Chin. Phys. B 23 078703

    [10]

    Figueiredo M A T, Nowak R D 2003 IEEE Trans. Image Process. 12 906

    [11]

    Candes E, Romberg J, Tao T 2006 Commun. Pur. Appl. Math. 59 1207

    [12]

    Elad M, Matalon B, Zibulevsky M 2006 Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition New York, USA, June 17-22, 2006 p1924

    [13]

    Candes E J, Tao T 2005 IEEE Trans. Inf. Theory 51 4203

    [14]

    Chen S S, Donoho D L, Saunders M A 1998 SIAM J. Sci. Comput. 20 33

    [15]

    Kim S J, Koh K, Lustig M, Boyd S 2007 Proceedings of the 14th IEEE International Conference on Image Processing San Antonio, USA, September 16-19, 2007 p117

    [16]

    Figueiredo M A T, Nowak R D, Wright S J 2007 IEEE J. Sel. Topics Signal Process. 1 586

    [17]

    Daubechies I, Defrise M, Mol C D 2004 Commun. Pur. Appl. Math. 57 1413

    [18]

    Bioucas-Dias J M, Figueiredo M A T 2007 IEEE Trans. Image Process. 16 2992

    [19]

    Wright S J, Nowak R D, Figueiredo M A T 2009 IEEE Trans. Signal Process. 57 2479

    [20]

    Bonettini S, Zanella R, Zanni L 2009 Inverse Problems 25 015002

    [21]

    Bertsekas D P 1999 Nonlinear Programming (2nd Ed.) (Belmont: Athena Scientific) pp665-668

    [22]

    Nesterov Y 2004 IEEE Trans. Image Process. 13 600

    [23]

    Wang Z, Bovik A C, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process. 13 600

  • [1] Li Yong-Fei, Guo Rui-Ming, Zhao Hang-Fang. Sparse reconstruction of acoustic interference fringes in shallow water and internal wave environment. Acta Physica Sinica, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [2] Zhong Ming-Yu, Xi Liang, Si Fu-Qi, Zhou Hai-Jin, Wang Yu. Tomographic reconstruction of stack plume based on sparse optimization. Acta Physica Sinica, 2019, 68(16): 164205. doi: 10.7498/aps.68.20190268
    [3] Chen Feng, Zheng Na, Xu Hai-Bo. Density reconstruction based on energy loss in proton radiography. Acta Physica Sinica, 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [4] Qiao Zhi-Wei. The total variation constrained data divergence minimization model for image reconstruction and its Chambolle-Pock solving algorithm. Acta Physica Sinica, 2018, 67(19): 198701. doi: 10.7498/aps.67.20180839
    [5] Qi Jun-Cheng, Chen Rong-Chang, Liu Bin, Chen Ping, Du Guo-Hao, Xiao Ti-Qiao. Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm. Acta Physica Sinica, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [6] Feng Hui, Sun Biao, Ma Shu-Gen. One-bit compressed sensing reconstruction for block sparse signals. Acta Physica Sinica, 2017, 66(18): 180202. doi: 10.7498/aps.66.180202
    [7] Cheng Xue-Tao, Liang Xin-Gang. Discussion on the application of entropy generation minimization to the optimizations of heat transfer and heat-work conversion. Acta Physica Sinica, 2016, 65(18): 180503. doi: 10.7498/aps.65.180503
    [8] Wang Lin-Yuan, Liu Hong-Kui, Li Lei, Yan Bin, Zhang Han-Ming, Cai Ai-Long, Chen Jian-Lin, Hu Guo-En. Review of sparse optimization-based computed tomography image reconstruction from few-view projections. Acta Physica Sinica, 2014, 63(20): 208702. doi: 10.7498/aps.63.208702
    [9] Xia Shao-Jun, Chen Lin-Gen, Ge Yan-Lin, Sun Feng-Rui. Influence of heat leakage on entransy dissipation minimization of heat exchanger. Acta Physica Sinica, 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [10] Deng Cheng-Zhi, Tian Wei, Chen Pan, Wang Sheng-Qian, Zhu Hua-Sheng, Hu Sai-Feng. Infrared image super-resolution via locality-constrained group sparse model. Acta Physica Sinica, 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [11] Mao Bao-Lin, Chen Xiao-Zhao, Xiao Da-Yu, Fan Sheng-Yu, Teng Yue-Yang, Kang Yan. Ordered subset image reconstruction studied by means of total variation minimization and fast first-order method in low dose computed tomograhpy. Acta Physica Sinica, 2014, 63(13): 138701. doi: 10.7498/aps.63.138701
    [12] Gu Yu-Fei, Yan Bin, Li Lei, Wei Feng, Han Yu, Chen Jian. Image reconstruction based on total variation minimization and alternating direction method for Compton scatter tomography. Acta Physica Sinica, 2014, 63(1): 018701. doi: 10.7498/aps.63.018701
    [13] Xia Shao-Jun, Chen Lin-Gen, Ge Yan-Lin, Sun Feng-Rui. Entransy dissiaption minimization for isothermal throttling process. Acta Physica Sinica, 2013, 62(18): 180202. doi: 10.7498/aps.62.180202
    [14] Zhang Pin, Liang Yan-Mei, Chang Sheng-Jiang, Fan Hai-Lun. Kidney segmentation in computed tomography sequences based on energy minimization. Acta Physica Sinica, 2013, 62(20): 208701. doi: 10.7498/aps.62.208701
    [15] Wang Lin-Yuan, Zhang Han-Ming, Cai Ai-Long, Yan Bin, Li Lei, Hu Guo-En. Image reconstruction algorithm based on inexact alternating direction total-variation minimization. Acta Physica Sinica, 2013, 62(19): 198701. doi: 10.7498/aps.62.198701
    [16] Zhou Guang-Zhao, Wang Yu-Dan, Ren Yu-Qi, Chen Can, Ye Lin-Lin, Xiao Ti-Qiao. Digital simulation for 3D reconstruction of coherent x-ray diffractive imaging. Acta Physica Sinica, 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [17] Wu Ya-Bo, Lü Jian-Bo, Li Song, Yang Xiu-Yi. The evolution of the reconstructing five-dimensional cosmological model with a big bounce. Acta Physica Sinica, 2008, 57(4): 2621-2626. doi: 10.7498/aps.57.2621
    [18] Huang Qun-Xing, Liu Dong, Wang Fei, Yan Jian-Hua, Chi Yong, Cen Ke-Fa. Soot volume fraction and temperature reconstruction model research for asymmetric diffusive C-H flame. Acta Physica Sinica, 2008, 57(12): 7928-7936. doi: 10.7498/aps.57.7928
    [19] ZHANG GUO-MIN, YANG CHUAN-ZHANG. MONTE CARLO STUDY ON THE PHASE DIAGRAM OF THE FERROMAGNETIC BOND-DILUTE BLUME-CAPEL MODEL. Acta Physica Sinica, 1993, 42(1): 128-133. doi: 10.7498/aps.42.128
    [20] T. S. CHANG. MOTION OF POLES IN THE LEE MODEL. Acta Physica Sinica, 1965, 21(11): 1882-1888. doi: 10.7498/aps.21.1882
Metrics
  • Abstract views:  6163
  • PDF Downloads:  162
  • Cited By: 0
Publishing process
  • Received Date:  14 January 2015
  • Accepted Date:  22 May 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map