-
基于自旋反转模型, 研究了垂直腔表面发射激光器(VCSEL) 在光注入和光电反馈共同作用下的动力学特性. 研究结果表明: 一个受到主VCSEL光注入的副VCSEL, 在同时存在光电正反馈时, 其输出的两个线偏振模式(X和Y偏振模) 可呈现周期、倍周期、多周期、混沌等丰富的动力学状态, 且两偏振模动力学态的演化路径存在差异. 各动力学状态在由反馈强度f与注入强度 所构成的参数空间的分布区域随着主、副VCSEL 的频率失谐(=m-s,m,s 分别为主、副VCSEL自由运行时的振荡频率) 的变化而发生改变. 当为正失谐时, 呈现混沌的区域相比零失谐和负失谐时有明显的扩展, 即副VCSEL能在更大的参数范围内实现混沌输出. 对于特定的频率失谐, 分析了光电正反馈强度f和光注入强度对混沌输出带宽的影响. 通过合理选择反馈强度以及注入强度, 可使副VCSEL混沌输出带宽显著增加.
-
关键词:
- 垂直腔表面发射激光器 /
- 光电正反馈 /
- 光注入 /
- 混沌带宽
Based on the spin-flip model (SFM), we theoretically investigate the dynamics of a vertical-cavity surface-emitting laser (VCSEL) subject to optical injection and positive optoelectronic feedback. The results show that under the joint action of positive optoelectronic feedback and optical injection from a master VCSEL (M-VCSEL), two polarization modes of a slave VCSEL (S-VCSEL) will show many dynamic states such as period one, period two, multi-period and chaos, and the evolution routes of these states are different for two polarization modes. Mapping of dynamic region as a function of feedback strength f and injection strength is varied with frequency detuning between M-VCSEL and S-VCSEL (=m-s, where m ands are the free-running frequencies of M-VCSEL and S-VCSEL, respectively). Compared with the case for zero or negative frequency detuning, the region of chaotic state is expanded significantly under positive . For a fixed , the influences of f and on the chaotic bandwidth of S-VCSEL are discussed. Through selecting proper f and , chaotic bandwidth of S-VCSEL can be improved obviously.-
Keywords:
- vertical-cavity surface-emitting laser /
- positive optoelectronic feedback /
- optical injection /
- chaotic bandwidth
[1] Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1994 Appl. Phys. Lett. 64 3539
[2] Xia G Q, Wu Z M, Yang Q, Lin X D 2009 Chin. Sci. Bull. 54 3643
[3] [4] [5] Sacher J, Baums D, Panknin P, Elssser W, Gbel E O 1992 Phys. Rev. A 45 1893
[6] [7] Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661
[8] Liu H J, Feng J C 2009 Acta Phys. Sin. 58 1484 (in Chinese) [刘慧杰, 冯久超 2009 58 1484]
[9] [10] Yan S L 2010 Acta Phys. Sin. 59 3810 (in Chinese) [颜森林 2010 59 3810]
[11] [12] Turovets S I, Dellunde J, Shore K A 1997 J. Opt. Soc. Am. B 14 200
[13] [14] Xia G Q, Chan S C, Liu J M 2007 Opt. Express 15 572
[15] [16] Vicente R, Tang S, Mulet J, Mirasso C R, Liu J M 2004 Phys. Rev. E 70 046216
[17] [18] [19] Xia G Q, Wu Z M, Liao J F 2009 Opt. Commun. 282 1009
[20] [21] Lin F Y, Liu J M 2004 IEEE J. Quantum. Electron. 40 815
[22] [23] Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921
[24] [25] Lin F Y, Liu J M 2003 Opt. Commun. 221 173
[26] Pin X X, Lin X D, Wu Z M, Wang L, Xia G Q 2010 Optoelectron. Adv. Mat. Rap. Commun. 4 1095
[27] [28] Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124
[29] [30] Qi X Q, Liu J M 2011 IEEE J. Quantum. Electron. 47 762
[31] [32] Takiguchi Y, Ohyagi K, Ohtsubo J 2003 Opt. Lett. 28 319
[33] [34] Lin X D, Xia G Q, Deng T, Chen J G, Wu Z M 2009 Optoelectron. Adv. Mat. Rap. Commun. 3 1129
[35] [36] [37] Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633
[38] [39] Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[40] [41] Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[42] [43] Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619
[44] [45] Zhang W L, Pan W, Luo B, Li X F, Zuo X H, Wang M Y 2007 Appl. Opt. 46 7262
-
[1] Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1994 Appl. Phys. Lett. 64 3539
[2] Xia G Q, Wu Z M, Yang Q, Lin X D 2009 Chin. Sci. Bull. 54 3643
[3] [4] [5] Sacher J, Baums D, Panknin P, Elssser W, Gbel E O 1992 Phys. Rev. A 45 1893
[6] [7] Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661
[8] Liu H J, Feng J C 2009 Acta Phys. Sin. 58 1484 (in Chinese) [刘慧杰, 冯久超 2009 58 1484]
[9] [10] Yan S L 2010 Acta Phys. Sin. 59 3810 (in Chinese) [颜森林 2010 59 3810]
[11] [12] Turovets S I, Dellunde J, Shore K A 1997 J. Opt. Soc. Am. B 14 200
[13] [14] Xia G Q, Chan S C, Liu J M 2007 Opt. Express 15 572
[15] [16] Vicente R, Tang S, Mulet J, Mirasso C R, Liu J M 2004 Phys. Rev. E 70 046216
[17] [18] [19] Xia G Q, Wu Z M, Liao J F 2009 Opt. Commun. 282 1009
[20] [21] Lin F Y, Liu J M 2004 IEEE J. Quantum. Electron. 40 815
[22] [23] Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921
[24] [25] Lin F Y, Liu J M 2003 Opt. Commun. 221 173
[26] Pin X X, Lin X D, Wu Z M, Wang L, Xia G Q 2010 Optoelectron. Adv. Mat. Rap. Commun. 4 1095
[27] [28] Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124
[29] [30] Qi X Q, Liu J M 2011 IEEE J. Quantum. Electron. 47 762
[31] [32] Takiguchi Y, Ohyagi K, Ohtsubo J 2003 Opt. Lett. 28 319
[33] [34] Lin X D, Xia G Q, Deng T, Chen J G, Wu Z M 2009 Optoelectron. Adv. Mat. Rap. Commun. 3 1129
[35] [36] [37] Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633
[38] [39] Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[40] [41] Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[42] [43] Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619
[44] [45] Zhang W L, Pan W, Luo B, Li X F, Zuo X H, Wang M Y 2007 Appl. Opt. 46 7262
计量
- 文章访问数: 7121
- PDF下载量: 694
- 被引次数: 0