Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrical transport properties of polycrystalline TaN1- films

Zhou Ding-Bang Liu Xin-Dian Li Zhi-Qing

Citation:

Electrical transport properties of polycrystalline TaN1- films

Zhou Ding-Bang, Liu Xin-Dian, Li Zhi-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Tantalum nitride with a face-centered cubic structure (TaN1-) has received much attention due to its high hardness, good wear resistance, chemical inertness, thermodynamic stability, and low temperature coefficients of resistivity. First-principles calculations have indicated that cubic-TaN possesses metallic energy band structure, and the experimental results show that the carrier concentration in TaN1- films are comparable to that of normal metals. However, semiconductor-like temperature behavior of resistivity is often observed in polycrystalline TaN1- film. In the present paper, we systematically study the crystal structures and electrical transport properties of a series of TaN1- thin films, deposited on quartz glass substrates at different temperatures by the rf sputtering method. Both X-ray diffraction patterns and scanning electron microscope images indicate that the films are polycrystalline and have face-centered cubic structure. It is also found that the mean grain sizes of the films gradually increase with increasing depositing temperature. The temperature dependence of resistivity is measured from 350 K down to 2 K. The films with large grain sizes have a superconductor-insulator transition below ~ 5 K, while the films with small grain sizes retain the semiconductor characteristics down to the minimum measuring temperature, 2 K. These phenomena are similar to that observed in superconductor-insulator granular composites. Above 5 K, the temperature coefficients of the resistivities of the films are all negative. In the temperature range between 10 and 30 K, the films show hopping transport properties which are often seen in metal-insulator granular systems, i. e. the logarithm of the resistivity (log ) varies linearly with T-1/2, where T represents the measured temperature. The thermal fluctuation-induced tunneling conductive mechanism dominates the temperature behaviors of resistivities from 70 K up to 350 K. It can be seen that the thermal fluctuation induced tunneling conductive mechanism is also the main conductive mechanism in metal-insulator granular systems in the higher temperature regions. Our results indicate that the electrical transport properties of the polycrystalline TaN1- films are similar to that of metal-insulator granular films with different volume fractions of metal, where the metal possesses superconductivity at low temperatures. Hence the high resistivity and negative temperature coefficient of resistivity of TaN1- polycrystalline film can be reasonably ascribed to the similarity in microstructures between TaN1- polycrystalline film and metal-insulator granular film.
      Corresponding author: Liu Xin-Dian, xindianliu@tju.edu.cn.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174216) and Research Fund for the Doctoral Program of Higher Education of China (Grant No.20120032110065).
    [1]

    Baba K, Hatada R 1996 Surf. Coat. Technol. 84 429

    [2]

    Bozorg-Grayeli E, Li Z J, Asheghi M, Delgado G, Pokrovsky A, Panzer M, Wack D, Goodson K E 2011 Appl. Phys. Lett. 99 261906

    [3]

    Kwon J, Chabal Y J 2010 Appl. Phys. Lett. 96 151907

    [4]

    Engel A, Aeschbacher A, Inderbitzin K, Schilling A, Il'inK, Hofherr M, Siegel M, Semenov A, Hbers H W 2012 Appl. Phys. Lett. 100 062601

    [5]

    Chaudhuri S, Maasilta I J 2014 Appl. Phys. Lett. 104 122601

    [6]

    Shin C S, Gall D, Kim Y W, Desjardins P, Petrov I, Greene J E, Odn M, Hultman L 2001 J. Appl. Phys. 90 2879

    [7]

    Stampfl C, Mannstadt W, Asahi R, Freeman A J 2001 Phys. Rev. B 63 155106

    [8]

    Breznay N P, Michaeli K, Tikhonov K S, Finkel'stein A M, Tendulkar M, Kapitulnik A 2012 Phys. Rev. B 86 014514

    [9]

    Yu L, Stampfl C, Marshall D, Eshrich T, Narayanan V, Rowell J M, Newman N, Freeman A J 2002 Phys. Rev. B 65 245110

    [10]

    Tiwari A, Wang H, kumar D, Narayan J 2002 Mod. Phys. Lett.B 16 1143

    [11]

    Lal K, Ghosh P, Biswas D, Meikap A K, Chattopadhyay S K, Chatterjee S K, Ghosh M, Baba K, Hatada R 2004 Solid State Commun. 131 479

    [12]

    Sheng P, Abeles B 1972 Phys. Rev. Lett. 28 34

    [13]

    Sheng P, Abeles B, Arie Y 1973 Phys. Rev. Lett. 31 44

    [14]

    Altshuler B L, Aronov A G, Lee P A 1980 Phys. Rev. Lett. 44 1288

    [15]

    Altshuler B L, Aronov A G, in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros, M. Pollak (Elsevier, Amsterdam, 1985) pp74-78

    [16]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287

    [17]

    Sheng P, Sichel E K, Gittleman J I 1978 Phys. Rev. Lett. 40 1197

    [18]

    Sheng P 1980 Phys. Rev. B 21 2180

    [19]

    Xie H, Sheng P 2009 Phys. Rev. B 79 165419

    [20]

    Liu X D, Liu J, Chen S, Li Z Q 2012 Appl. Surf. Sci. 263 486

    [21]

    Zheng X W, Li Z Q 2009 Appl. Surf. Sci. 255 8104

    [22]

    Sun X, Kolawa E, Chen J S, Reid J S, Nicolet M A 1993 Thin Solid Films 236 347

    [23]

    Sreenivasan R, Sugawara T, Saraswat K C, Mclntyre P C 2007 Appl. Phys. Lett. 90 102101

    [24]

    Nie H B, Xu S Y, Wang S J, You L P, Yang Z, Ong C K, Li J, Liew T Y F 2001 Appl. Phys. A 73 229

    [25]

    Gerstenberg D, Hall P M 1964 J. Electrochem. Soc. 111 936

    [26]

    Shapira Y, Deutscher G 1983 Phys. Rev. B 27 4463

    [27]

    Breznay N P, Kapitulnik A 2013 Phys. Rev. B 88 104510

    [28]

    Beloborodov I S, Lopatin A V, Vinokur V M, Efetov K B 2007 Rev. Mod. Phys. 79 469

    [29]

    Ivry Y, Kim C S, Dane A E, Fazio D D, McCaughan A N, Sunter K A, Zhao Q Y, Berggren K K 2014 Phys. Rev. B 90 214515

    [30]

    Lerer S, Bachar N, Deutscher G, Dagan Y 2014 Phys. Rev. B 90 214521

    [31]

    Yang X C, Riehemann W, Dubiel M, Hofmeister H 2002 Mater. Sci. Eng. B 95 299

    [32]

    Ederth J, Johnsson P, Niklasson G A, Hoel A, Hultker A, Heszler P, Granqvist C G, van Doorn A R, Jongerius M J, Burgard D 2003 Phys. Rev. B 68 155410

  • [1]

    Baba K, Hatada R 1996 Surf. Coat. Technol. 84 429

    [2]

    Bozorg-Grayeli E, Li Z J, Asheghi M, Delgado G, Pokrovsky A, Panzer M, Wack D, Goodson K E 2011 Appl. Phys. Lett. 99 261906

    [3]

    Kwon J, Chabal Y J 2010 Appl. Phys. Lett. 96 151907

    [4]

    Engel A, Aeschbacher A, Inderbitzin K, Schilling A, Il'inK, Hofherr M, Siegel M, Semenov A, Hbers H W 2012 Appl. Phys. Lett. 100 062601

    [5]

    Chaudhuri S, Maasilta I J 2014 Appl. Phys. Lett. 104 122601

    [6]

    Shin C S, Gall D, Kim Y W, Desjardins P, Petrov I, Greene J E, Odn M, Hultman L 2001 J. Appl. Phys. 90 2879

    [7]

    Stampfl C, Mannstadt W, Asahi R, Freeman A J 2001 Phys. Rev. B 63 155106

    [8]

    Breznay N P, Michaeli K, Tikhonov K S, Finkel'stein A M, Tendulkar M, Kapitulnik A 2012 Phys. Rev. B 86 014514

    [9]

    Yu L, Stampfl C, Marshall D, Eshrich T, Narayanan V, Rowell J M, Newman N, Freeman A J 2002 Phys. Rev. B 65 245110

    [10]

    Tiwari A, Wang H, kumar D, Narayan J 2002 Mod. Phys. Lett.B 16 1143

    [11]

    Lal K, Ghosh P, Biswas D, Meikap A K, Chattopadhyay S K, Chatterjee S K, Ghosh M, Baba K, Hatada R 2004 Solid State Commun. 131 479

    [12]

    Sheng P, Abeles B 1972 Phys. Rev. Lett. 28 34

    [13]

    Sheng P, Abeles B, Arie Y 1973 Phys. Rev. Lett. 31 44

    [14]

    Altshuler B L, Aronov A G, Lee P A 1980 Phys. Rev. Lett. 44 1288

    [15]

    Altshuler B L, Aronov A G, in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros, M. Pollak (Elsevier, Amsterdam, 1985) pp74-78

    [16]

    Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287

    [17]

    Sheng P, Sichel E K, Gittleman J I 1978 Phys. Rev. Lett. 40 1197

    [18]

    Sheng P 1980 Phys. Rev. B 21 2180

    [19]

    Xie H, Sheng P 2009 Phys. Rev. B 79 165419

    [20]

    Liu X D, Liu J, Chen S, Li Z Q 2012 Appl. Surf. Sci. 263 486

    [21]

    Zheng X W, Li Z Q 2009 Appl. Surf. Sci. 255 8104

    [22]

    Sun X, Kolawa E, Chen J S, Reid J S, Nicolet M A 1993 Thin Solid Films 236 347

    [23]

    Sreenivasan R, Sugawara T, Saraswat K C, Mclntyre P C 2007 Appl. Phys. Lett. 90 102101

    [24]

    Nie H B, Xu S Y, Wang S J, You L P, Yang Z, Ong C K, Li J, Liew T Y F 2001 Appl. Phys. A 73 229

    [25]

    Gerstenberg D, Hall P M 1964 J. Electrochem. Soc. 111 936

    [26]

    Shapira Y, Deutscher G 1983 Phys. Rev. B 27 4463

    [27]

    Breznay N P, Kapitulnik A 2013 Phys. Rev. B 88 104510

    [28]

    Beloborodov I S, Lopatin A V, Vinokur V M, Efetov K B 2007 Rev. Mod. Phys. 79 469

    [29]

    Ivry Y, Kim C S, Dane A E, Fazio D D, McCaughan A N, Sunter K A, Zhao Q Y, Berggren K K 2014 Phys. Rev. B 90 214515

    [30]

    Lerer S, Bachar N, Deutscher G, Dagan Y 2014 Phys. Rev. B 90 214521

    [31]

    Yang X C, Riehemann W, Dubiel M, Hofmeister H 2002 Mater. Sci. Eng. B 95 299

    [32]

    Ederth J, Johnsson P, Niklasson G A, Hoel A, Hultker A, Heszler P, Granqvist C G, van Doorn A R, Jongerius M J, Burgard D 2003 Phys. Rev. B 68 155410

  • [1] Yang Jian, Gao Kuang-Hong, Li Zhi-Qing. Low-temperature electrical transport properties of La doped BaSnO3 films. Acta Physica Sinica, 2023, 72(22): 227301. doi: 10.7498/aps.72.20231082
    [2] Cai Wen-Bo, Yang Yang, Li Zhi-Qing. Preparation and electrical transport properties of TiO thin films. Acta Physica Sinica, 2023, 72(22): 227302. doi: 10.7498/aps.72.20231083
    [3] Liu Ran, Bao De-Liang, Jiao Yang, Wan Ling-Wen, Li Zong-Liang, Wang Chuan-Kui. Study on force sencitivity of electronic transport properties of 1,4-butanedithiol molecular device. Acta Physica Sinica, 2014, 63(6): 068501. doi: 10.7498/aps.63.068501
    [4] Lu Zhao-Xin. Effects of parameter modifications on phase transition properties of ferroelectric thin films. Acta Physica Sinica, 2013, 62(11): 116802. doi: 10.7498/aps.62.116802
    [5] Na Yuan-Yuan, Wang Cong, Chu Li-Hua, Ding Lei, Yan Jun. Study on electronic transport and magnetic properties for antiperovskite Mn3CuNx thin films fabricated with different N2 flow rates. Acta Physica Sinica, 2012, 61(3): 036801. doi: 10.7498/aps.61.036801
    [6] Luo Bing-Cheng, Chen Chang-Le, Xie Lian. Electrical transport and photo-induced properties in Fe3O4 film. Acta Physica Sinica, 2011, 60(2): 027306. doi: 10.7498/aps.60.027306
    [7] Hu Wei, Li Zong-Liang, Ma Yong, Li Ying-De, Wang Chuan-Kui. Geometric structure and electronic transport property of single alkanemonothiol molecule junction: external force effect and terminal group effect. Acta Physica Sinica, 2011, 60(1): 017304. doi: 10.7498/aps.60.017304
    [8] Ma Song-Shan, Xu Hui, Guo Rui, Cui Mai-Ling. Theoretical study on the hopping conductivity of quasi-one-dimensional disordered systems. Acta Physica Sinica, 2010, 59(7): 4972-4979. doi: 10.7498/aps.59.4972
    [9] Song Chao, Chen Gu-Ran, Xu Jun, Wang Tao, Sun Hong-Cheng, Liu Yu, Li Wei, Chen Kun-Ji. Properties of electric transport in crystallized silicon films under different annealing temperatures. Acta Physica Sinica, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [10] Hu Ni, Xiong Rui, Wei Wei, Wang Zi-Yu, Wang Li-Li, Yu Zu-Xing, Tang Wu-Feng, Shi Jing. Raman scattering study of the spin ladder compound Sr14(Cu1-yFey)24O41. Acta Physica Sinica, 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [11] Ma Song-Shan, Xu Hui, Li Yan-Feng, Zhang Peng-Hua. Characteristic of alternating current hopping conductivity in one-dimensional binary disordered system with off-diagonal correlations. Acta Physica Sinica, 2007, 56(9): 5394-5399. doi: 10.7498/aps.56.5394
    [12] Ma Song-Shan, Xu Hui, Liu Xiao-Liang, Wang Huan-You. Characteristics of hopping conductivity in one-dimensional binary disordered system with off-diagonal correlations. Acta Physica Sinica, 2007, 56(5): 2852-2857. doi: 10.7498/aps.56.2852
    [13] Li Pei-Gang, Lei Ming, Tang Wei-Hua, Song Peng-Yun, Chen Chin-Ping, Li Ling-Hong. The effect of grain boundaries on magnetic and transport properties in colossal magnetoresistance particle film. Acta Physica Sinica, 2006, 55(5): 2328-2332. doi: 10.7498/aps.55.2328
    [14] Hu Ni, Xie Hui, Wang Li-Li, Lin Ying, Xiong Rui, Yu Zu-Xing, Tang Wu-Feng, Shi Jing. B-site Fe doping effect on the structure and electronic transport properties of quasi-one-dimensional spin ladder compound Sr14(Cu1-yFey)24O41. Acta Physica Sinica, 2006, 55(7): 3480-3487. doi: 10.7498/aps.55.3480
    [15] Tao Xiang-Ming, Xia A-Gen, Ye Gao-Xiang. Anomalous hopping and tunneling effects on the conductivity ofa wedge-shaped Au film system. Acta Physica Sinica, 2004, 53(1): 239-243. doi: 10.7498/aps.53.239
    [16] . Acta Physica Sinica, 2002, 51(4): 882-888. doi: 10.7498/aps.51.882
    [17] Xu Hui, Song Wei-Fu. . Acta Physica Sinica, 2002, 51(8): 1798-1803. doi: 10.7498/aps.51.1798
    [18] XU GANG-YI, WANG TIAN-MIN, HE YU-LIANG, MA ZHI-XUN, ZHENG GUO-ZHEN. THE TRANSPORT MECHANISM IN NANOCRYSTALLINE SILICON FILMS AT LOW TEMPERATURE. Acta Physica Sinica, 2000, 49(9): 1798-1803. doi: 10.7498/aps.49.1798
    [19] CHENG XING-KUI, ZHAO WEN-JIN, DAI GUO-CAI. ELECTRONIC TRANSPORT PROPERTIES OF HIGH CONDUCTIVITY a-Si:H:Y ALLOY. Acta Physica Sinica, 1988, 37(3): 481-484. doi: 10.7498/aps.37.481
    [20] HO YU-PING. HOPPING PROCESS AND IMPURITY CONDUCTION IN VALENCE SEMICONDUCTORS. Acta Physica Sinica, 1963, 19(12): 791-806. doi: 10.7498/aps.19.791
Metrics
  • Abstract views:  4727
  • PDF Downloads:  167
  • Cited By: 0
Publishing process
  • Received Date:  18 March 2015
  • Accepted Date:  27 May 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map