搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1,4-丁二硫醇分子器件电输运性质的力敏特性研究

刘然 包德亮 焦扬 万令文 李宗良 王传奎

引用本文:
Citation:

1,4-丁二硫醇分子器件电输运性质的力敏特性研究

刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎

Study on force sencitivity of electronic transport properties of 1,4-butanedithiol molecular device

Liu Ran, Bao De-Liang, Jiao Yang, Wan Ling-Wen, Li Zong-Liang, Wang Chuan-Kui
PDF
导出引用
  • 基于杂化密度泛函理论,研究了1,4-丁二硫醇分子体系的结构随电极作用力的变化及拉断过程;并利用弹性散射格林函数方法进一步计算了不同电极作用力下分子体系的电输运特性. 结果显示,界面结构不同,拉断分子体系所用的拉力也不同:分子末端硫原子处于Au(111)面的空位上方时,拉断分子体系需约1.75 nN的拉力;若金电极表面存在孤立金原子与1,4-丁二硫醇分子末端的硫原子相连,拉断分子体系只需约1.0 nN的力,且伴有孤立金原子被拉出. 两种情况分别与不同实验测量相符合. 分子在压缩过程中发生扭曲并引起表面金原子滑移,然而压缩扭曲过程与拉伸回复过程不可逆. 电极拉力约为0.7–0.8 nN时,分子体系在不同界面构型下以及在不同扭转状态下,电导都出现极小值,这与实验结论一致. 分子的末端原子与电极间耦合强度随电极作用力的变化是引起分子体系电导变化的主要因素. 实验在0.8 nN附近同时测得较小概率的高电导值与双分子导电有关.
    Based on the hybrid density functional theory, the relationship between geometric structure of 1,4-butanedithiol molecular junction and the electrodes force and the breaking process of the molecular junction are studied. The electronic transport properties of the molecular junction under different external forces are further investigated using the elastic scattering Green’s function method. The numerical results show that different interface configurations result in different rupture forces. The rupture force is about 1.75 nN when the terminal S atom is sited at the hollow position of Au(111) surface. However, the rupture force is about 1.0 nN when the terminal S atom links with one Au atom which is on the gold surface singly. And with the breakdown of the molecular junction, the single Au atom is pulled away from the gold surface by the terminal S atom. These two results are consistent with different experimental measurements respectively. The molecule is twisted under the electrode pressure and thus further induces the surface Au atom to glide on the gold surface. However, the processes of the molecule twisted by pressure and restored by pulling are two irreversible processes. The stretching force of electrode is 0.7–0.8 nN, and the conductance always shows a minimal value under different interface configurations and twisting states, which is consistent with experimental conclusion. The change of the coupling between the terminal atom and the electrodes induced by the electrode force is the main factor of influencing the conductance of the molecular system. The existence of bimolecular junction results in a small possibility of higher conductance values, which is probed by experiment under a stretching force of about 0.8 nN.
    • 基金项目: 国家自然科学基金(批准号:11374195,11304172)、山东省自然科学基金(批准号:ZR2013FM006)和山东省科技计划项目(批准号:J13LJ01,J12LJ04)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374195, 11304172), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013FM006) and the Shandong Province Higher Educational Science and Technology Program, China (Grant Nos. J13LJ01, J12LJ04).
    [1]

    Xu Y, Fang C, Cui B, Ji G, Zhai Y, Liu D S 2011 Appl. Phys. Lett. 99 043304

    [2]

    Liu F T, Cheng Y, Yang F B, Cheng X H, Chen X R 2013 Acta Phys. Sin. 62 140504 (in Chinese) [柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣 2013 62 140504]

    [3]

    Parameswaran R, Widawsky J R, Vázquez H, Park Y S, Boardman B M, Nuckolls C, Steigerwald M L, Hybertsen M S, Venkataraman L 2010 J. Phys. Chem. Lett. 1 2114

    [4]

    Ma G, Shen X, Sun L, Zhang R, Wei P, Sanvito S, Hou S M 2010 Nanotechnology 21 495202

    [5]

    Zhang G P, Hu G C, Song Y, Li Z L, Wang C K 2012 J. Phys. Chem. C 116 22009

    [6]

    Li Z L, Zou B, Wang C K, Luo Y 2006 Phys. Rev. B 73 075326

    [7]

    Chen I W P, Tseng W H, Gu M W, Su L C, Hsu C H, Chang W H, Chen C H 2013 Angew. Chem. Int. Ed. 52 2449

    [8]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003

    [9]

    Fu X X, Zhang L X, Li Z L, Wang C K 2013 Chin. Phys. B 22 028504

    [10]

    Wang G, Kim T W, Lee T 2011 J. Mater. Chem. 21 18117

    [11]

    An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Acta Phys. Sin. 59 2010 (in Chinese) [安义鹏, 杨传路, 王美山, 马晓光, 王德华 2010 59 2010]

    [12]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185

    [13]

    Guo C, Zhang Z H, Pan J B, Zhang J J 2011 Acta Phys. Sin. 60 117303 (in Chinese) [郭超, 张振华, 潘金波, 张俊俊 2011 60 117303]

    [14]

    Liu W, Cheng J, Yan C X, Li H H, Wang Y J, Liu D S 2011 Chin. Phys. B 20 107302

    [15]

    Morita T, Lindsay S 2007 J. Am. Chem. Soc. 129 7262

    [16]

    Seferos D S, Blum A S, Kushmerick J G, Bazan G C 2006 J. Am. Chem. Soc. 128 11260

    [17]

    Cohen H, Nogues C, Naaman R, Porath D 2005 Proc. Natl. Acad. Sci. USA 102 11589

    [18]

    Rubio G, Agraït N, Vieira S 1996 Phys. Rev. Lett. 76 2302

    [19]

    Nef C, Frederix P L T M, Brunner J, Schonenberger C, Calame M 2012 Nanotechnology 23 365201

    [20]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518

    [21]

    Pobelov I V, Mészáros G, Yoshida K, Mishchenko A, Gulcur M, Bryce M R, Wandlowski T 2012 J. Phys. Condens. Matter 24 164210

    [22]

    Xu B, Tao N J 2003 Science 301 1221

    [23]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252

    [24]

    Song H, Reed M A, Lee T 2011 Adv. Mater. 23 1583

    [25]

    Tsutsui M, Taniguchi M 2012 Sensors 12 7259

    [26]

    Dell E J, Capozzi B, DuBay K H, Berkelbach T C, Moreno J R, Reichman D R, Venkataraman L, Campos L M 2013 J. Am. Chem. Soc. 135 11724

    [27]

    Huang Z, Chen F, Bennett P A, Tao N 2007 J. Am. Chem. Soc. 129 13225

    [28]

    Aradhya S V, Frei M, Hybertsen M S, Venkataraman L 2012 Nature Mater. 11 872

    [29]

    Li Z L, Zhang G P, Wang C K 2011 J. Phys. Chem. C 115 15586

    [30]

    Aradhya S V, Venkataraman L 2013 Nature Nanotech. 8 399

    [31]

    Xu B, Xiao X, Tao N J 2003 J. Am. Chem. Soc. 125 16164

    [32]

    Hu W, Li Z L, Ma Y, Li Y D, Wang C K 2011 Acta Phys. Sin. 60 017304 (in Chinese) [胡伟, 李宗良, 马勇, 李英德, 王传奎 2011 60 017304]

    [33]

    Li Z L, Wang C K, Luo Y, Xue Q K 2004 Acta Phys. Sin. 53 1490 (in Chinese) [李宗良, 王传奎, 罗毅, 薛其坤 2004 53 1490]

    [34]

    Frisch M J, Trucks G W, Schlegel H B et al 2004 Gaussian 03, Revision E.01, Caussian, Inc., Wallingford CT

    [35]

    Jiang J, Wang C K, Luo Y 2006 QCME-V1.1 (Quantum Chemistry for Molecular Electronics), Royal Institute of Technology, Sweden

  • [1]

    Xu Y, Fang C, Cui B, Ji G, Zhai Y, Liu D S 2011 Appl. Phys. Lett. 99 043304

    [2]

    Liu F T, Cheng Y, Yang F B, Cheng X H, Chen X R 2013 Acta Phys. Sin. 62 140504 (in Chinese) [柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣 2013 62 140504]

    [3]

    Parameswaran R, Widawsky J R, Vázquez H, Park Y S, Boardman B M, Nuckolls C, Steigerwald M L, Hybertsen M S, Venkataraman L 2010 J. Phys. Chem. Lett. 1 2114

    [4]

    Ma G, Shen X, Sun L, Zhang R, Wei P, Sanvito S, Hou S M 2010 Nanotechnology 21 495202

    [5]

    Zhang G P, Hu G C, Song Y, Li Z L, Wang C K 2012 J. Phys. Chem. C 116 22009

    [6]

    Li Z L, Zou B, Wang C K, Luo Y 2006 Phys. Rev. B 73 075326

    [7]

    Chen I W P, Tseng W H, Gu M W, Su L C, Hsu C H, Chang W H, Chen C H 2013 Angew. Chem. Int. Ed. 52 2449

    [8]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003

    [9]

    Fu X X, Zhang L X, Li Z L, Wang C K 2013 Chin. Phys. B 22 028504

    [10]

    Wang G, Kim T W, Lee T 2011 J. Mater. Chem. 21 18117

    [11]

    An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Acta Phys. Sin. 59 2010 (in Chinese) [安义鹏, 杨传路, 王美山, 马晓光, 王德华 2010 59 2010]

    [12]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185

    [13]

    Guo C, Zhang Z H, Pan J B, Zhang J J 2011 Acta Phys. Sin. 60 117303 (in Chinese) [郭超, 张振华, 潘金波, 张俊俊 2011 60 117303]

    [14]

    Liu W, Cheng J, Yan C X, Li H H, Wang Y J, Liu D S 2011 Chin. Phys. B 20 107302

    [15]

    Morita T, Lindsay S 2007 J. Am. Chem. Soc. 129 7262

    [16]

    Seferos D S, Blum A S, Kushmerick J G, Bazan G C 2006 J. Am. Chem. Soc. 128 11260

    [17]

    Cohen H, Nogues C, Naaman R, Porath D 2005 Proc. Natl. Acad. Sci. USA 102 11589

    [18]

    Rubio G, Agraït N, Vieira S 1996 Phys. Rev. Lett. 76 2302

    [19]

    Nef C, Frederix P L T M, Brunner J, Schonenberger C, Calame M 2012 Nanotechnology 23 365201

    [20]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518

    [21]

    Pobelov I V, Mészáros G, Yoshida K, Mishchenko A, Gulcur M, Bryce M R, Wandlowski T 2012 J. Phys. Condens. Matter 24 164210

    [22]

    Xu B, Tao N J 2003 Science 301 1221

    [23]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252

    [24]

    Song H, Reed M A, Lee T 2011 Adv. Mater. 23 1583

    [25]

    Tsutsui M, Taniguchi M 2012 Sensors 12 7259

    [26]

    Dell E J, Capozzi B, DuBay K H, Berkelbach T C, Moreno J R, Reichman D R, Venkataraman L, Campos L M 2013 J. Am. Chem. Soc. 135 11724

    [27]

    Huang Z, Chen F, Bennett P A, Tao N 2007 J. Am. Chem. Soc. 129 13225

    [28]

    Aradhya S V, Frei M, Hybertsen M S, Venkataraman L 2012 Nature Mater. 11 872

    [29]

    Li Z L, Zhang G P, Wang C K 2011 J. Phys. Chem. C 115 15586

    [30]

    Aradhya S V, Venkataraman L 2013 Nature Nanotech. 8 399

    [31]

    Xu B, Xiao X, Tao N J 2003 J. Am. Chem. Soc. 125 16164

    [32]

    Hu W, Li Z L, Ma Y, Li Y D, Wang C K 2011 Acta Phys. Sin. 60 017304 (in Chinese) [胡伟, 李宗良, 马勇, 李英德, 王传奎 2011 60 017304]

    [33]

    Li Z L, Wang C K, Luo Y, Xue Q K 2004 Acta Phys. Sin. 53 1490 (in Chinese) [李宗良, 王传奎, 罗毅, 薛其坤 2004 53 1490]

    [34]

    Frisch M J, Trucks G W, Schlegel H B et al 2004 Gaussian 03, Revision E.01, Caussian, Inc., Wallingford CT

    [35]

    Jiang J, Wang C K, Luo Y 2006 QCME-V1.1 (Quantum Chemistry for Molecular Electronics), Royal Institute of Technology, Sweden

  • [1] 严岩, 孙峰, 羊志, 孔程昱, 葛云龙, 陈登辉, 邱帅, 李宗良. 金电极对偶氮苯分子结的结构及其电输运性质的力学调控作用.  , 2024, 73(8): 088502. doi: 10.7498/aps.73.20231999
    [2] 杨健, 高矿红, 李志青. La掺杂BaSnO3薄膜的低温电输运性质.  , 2023, 72(22): 227301. doi: 10.7498/aps.72.20231082
    [3] 蔡文博, 杨洋, 李志青. TiO薄膜的制备及电输运性质.  , 2023, 72(22): 227302. doi: 10.7498/aps.72.20231083
    [4] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性.  , 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [5] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质.  , 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [6] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性.  , 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [7] 樊帅伟, 王日高. 电极位置和截面尺寸对分子器件输运性质的调控.  , 2018, 67(21): 213101. doi: 10.7498/aps.67.20180974
    [8] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运.  , 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [9] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究.  , 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [10] 周定邦, 刘新典, 李志青. 多晶TaN1-薄膜的电输运性质研究.  , 2015, 64(19): 197302. doi: 10.7498/aps.64.197302
    [11] 纳元元, 王聪, 褚立华, 丁磊, 闫君. 不同氮流量制备Mn3CuNx薄膜及其电、磁输运性质的研究.  , 2012, 61(3): 036801. doi: 10.7498/aps.61.036801
    [12] 胡伟, 李宗良, 马勇, 李英德, 王传奎. 单硫醇分子结的几何结构和电输运性质:压力效应与末端基团效应.  , 2011, 60(1): 017304. doi: 10.7498/aps.60.017304
    [13] 夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰, 赵明文. 官能团对分子器件电输运特性的影响.  , 2008, 57(5): 3148-3154. doi: 10.7498/aps.57.3148
    [14] 胡 妮, 熊 锐, 魏 伟, 王自昱, 汪丽莉, 余祖兴, 汤五丰, 石 兢. 自旋梯状化合物Sr14(Cu1-yFey)24O41的拉曼散射谱研究.  , 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [15] 胡海龙, 张 琨, 王振兴, 孔 涛, 胡 颖, 王晓平. 硫醇自组装分子膜末端基团对其电荷输运特性的影响.  , 2007, 56(3): 1674-1679. doi: 10.7498/aps.56.1674
    [16] 夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰. 分子的位置取向对分子器件电输运特性的影响.  , 2007, 56(8): 4884-4890. doi: 10.7498/aps.56.4884
    [17] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究.  , 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [18] 胡 妮, 谢 卉, 汪丽莉, 林 颖, 熊 锐, 余祖兴, 汤五丰, 石 兢. Fe掺杂对自旋梯状化合物Sr14(Cu1-yFey)24O41的结构和电输运性质的影响.  , 2006, 55(7): 3480-3487. doi: 10.7498/aps.55.3480
    [19] 邹 斌, 李宗良, 王传奎, 薛其坤. 电极距离对分子器件电输运特性的影响.  , 2005, 54(3): 1341-1346. doi: 10.7498/aps.54.1341
    [20] 李宗良, 王传奎, 罗毅, 薛其坤. 电极维度对单分子器件伏-安特性的影响.  , 2004, 53(5): 1490-1495. doi: 10.7498/aps.53.1490
计量
  • 文章访问数:  6442
  • PDF下载量:  10141
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-24
  • 修回日期:  2013-12-01
  • 刊出日期:  2014-03-05

/

返回文章
返回
Baidu
map