Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on the hopping conductivity of quasi-one-dimensional disordered systems

Ma Song-Shan Xu Hui Guo Rui Cui Mai-Ling

Citation:

Theoretical study on the hopping conductivity of quasi-one-dimensional disordered systems

Ma Song-Shan, Xu Hui, Guo Rui, Cui Mai-Ling
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on a tight-binding disordered model describing a single electron band, a model of quasi-one-dimensional disordered systems with several chainsis established, and the direct current (dc) and alternating current (ac) conductance formula are obtained. By calculation, the dependence of the dc and ac conductivity on the disorder mode, dimension, temperature, and electric field is studied. The results indicate that the dc and ac conductivity of the systems decreases with the increase of the degree of lattices energy disorder, while the off-diagonal disorder can enhance the electrical conductivity of the system. Meanwhile, the conductivity increases with the increase of the number of chains in the systems. The model also quantitatively explains the temperature and electric field dependence of the conductivity of the system, that is, in diagonal disordered systems, the ac conductivity of the systems increases with the increasing of temperature, in off-diagonal disordered systems, the ac conductivity of the systems decreases with the increasing of temperature, while the dc conductivity of the systems in all disordered modes increases with the increasing of temperature. In addition, the dc conductivity of the quasi-one-dimensional disordered systems increases with the increasing of the strength of dc electric field, showing the non-Ohm’s law conductivity characteristics, and the larger the number of chains in systemis, the more slowly the dc conductivity of systems increases with the increasing electric field. The ac conductivity quasi-one-dimensional disordered systems increases as the frequency of the external electric field rises, satisfying the relation σac(ω)∝ω2[In(1/ω)]2.
    [1]

    Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    Rodin A S, Fogler M M 2009 Phys. Rev. B 80 155435

    [3]

    Maul R, Wenzel W 2009 Phys. Rev. B 80 045424

    [4]

    Hu D S, Lu X J, Zhang Y M, Zhu C P 2009 Chin. Phys. B 18 2498

    [5]

    Bascones E, Estévez V, Trinidad J A, MacDonald A H 2008 Phys. Rev. B 77 245422

    [6]

    Ben-Naim E, Krapivsky P L 2009 Phys. Rev. Lett. 102 190602

    [7]

    Brower P W, Mudry C, Simons B D, Altland A 1998 Phys. Rev. Lett. 81 862

    [8]

    Sedrakyan T, Alexander O 2004 Phys. Rev. B 70 214206

    [9]

    Hjort M, Stafstrom S 2000 Phys. Rev. B 62 5245

    [10]

    Xu H 1997 Chin. J. Comp. Phys.14 574 (in Chinese) [徐 慧 1997 计算物理 14 574]

    [11]

    Song Z Q, Xu H, Li Y F, Liu X L 2005 Acta Phys. Sin.54 2198 (in Chinese) [宋招权、徐 慧、李燕峰、刘小良 2005 物 理学报 54 2198] 〖12] Liu X L, Xu H, Ma S S, Song Z Q, Deng C S 2006 Acta Phys. Sin. 55 2492(in Chinese) [刘小良、徐 慧、马松山、宋招权、邓超生 2006 55 2492]

    [12]

    Gallos L K, Movaghar B, Siebbeles L D A 2003 Phys. Rev. B 67 165417

    [13]

    Ivanov D A, Ostrovsky P M, Skvortsov M A 2009 Phys. Rev. B 79 205108

    [14]

    Kiwi M, Ramirez R, Trias A 1978 Phys. Rev. B 17 3063

    [15]

    Carpena P, Bemaola-Galvan P, Ivanov P C, Stanley H E 2002 Nature 418 955

    [16]

    Dean P, Martin J L 1960 Proc. Roy. Soc. A 259 409

    [17]

    Dean P 1960 Proc. Roy. Soc. 254 507

    [18]

    Dean P 1972 Rev. Mod. Phys. 44 127

    [19]

    Wu S Y, Tung C, Schwartz M 1974 J. Math. Phys.15 938

    [20]

    Wu S Y, Zheng Z B 1981 Prog. Phys. 1 125 (in Chinese) [吴式玉、郑兆勃 1981 物理学进展 1 125]

    [21]

    Wu S Y, Zheng Z B 1981 Phys. Rev. B 24 4787

    [22]

    Miller A, Abraham E 1960 Phys. Rev. 120 745

    [23]

    Ambegaokar V, Halperin B I, Langer J S 1971 Phys. Rev. B 4 2612

    [24]

    Fogler M M, Kelley R S 2005 Phys. Rev. Lett. 95 166604

    [25]

    Mcinnes J A, Butcher P N, Triberis G P 1990 J. Phys. Condens. Matter 2 7861

    [26]

    Galperin Y M 1999 Doped Semiconductors:Role of Disorder (Lectures at Lund University)

    [27]

    Xu H, Zeng H T 1992 Acta Phys. Sin. 41 1666(in Chinese) [徐 慧、曾红涛 1992 41 1666]

    [28]

    Pasveer W F, Bobbert P A, Huinink H P, Michels M A J 2005 Phys. Rev. B 72 174204

    [29]

    Lazaros K G, Bijan M, Laurens D A S 2003 Phys. Rev. B 67 165417

    [30]

    Rosenow B, Nattermann T 2006 Phys. Rev. B 73 085103

    [31]

    Ma S S, Xu H, Li Y F, Zhang P H 2007 Acta Phys. Sin. 56 5394(in Chinese) [马松山、徐 慧、李燕峰、张鹏华 2007 56 5394]

    [32]

    Ma S S, Xu H, Wang H Y, Guo R 2009 Chin. Phys. B 18 3591

  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    Rodin A S, Fogler M M 2009 Phys. Rev. B 80 155435

    [3]

    Maul R, Wenzel W 2009 Phys. Rev. B 80 045424

    [4]

    Hu D S, Lu X J, Zhang Y M, Zhu C P 2009 Chin. Phys. B 18 2498

    [5]

    Bascones E, Estévez V, Trinidad J A, MacDonald A H 2008 Phys. Rev. B 77 245422

    [6]

    Ben-Naim E, Krapivsky P L 2009 Phys. Rev. Lett. 102 190602

    [7]

    Brower P W, Mudry C, Simons B D, Altland A 1998 Phys. Rev. Lett. 81 862

    [8]

    Sedrakyan T, Alexander O 2004 Phys. Rev. B 70 214206

    [9]

    Hjort M, Stafstrom S 2000 Phys. Rev. B 62 5245

    [10]

    Xu H 1997 Chin. J. Comp. Phys.14 574 (in Chinese) [徐 慧 1997 计算物理 14 574]

    [11]

    Song Z Q, Xu H, Li Y F, Liu X L 2005 Acta Phys. Sin.54 2198 (in Chinese) [宋招权、徐 慧、李燕峰、刘小良 2005 物 理学报 54 2198] 〖12] Liu X L, Xu H, Ma S S, Song Z Q, Deng C S 2006 Acta Phys. Sin. 55 2492(in Chinese) [刘小良、徐 慧、马松山、宋招权、邓超生 2006 55 2492]

    [12]

    Gallos L K, Movaghar B, Siebbeles L D A 2003 Phys. Rev. B 67 165417

    [13]

    Ivanov D A, Ostrovsky P M, Skvortsov M A 2009 Phys. Rev. B 79 205108

    [14]

    Kiwi M, Ramirez R, Trias A 1978 Phys. Rev. B 17 3063

    [15]

    Carpena P, Bemaola-Galvan P, Ivanov P C, Stanley H E 2002 Nature 418 955

    [16]

    Dean P, Martin J L 1960 Proc. Roy. Soc. A 259 409

    [17]

    Dean P 1960 Proc. Roy. Soc. 254 507

    [18]

    Dean P 1972 Rev. Mod. Phys. 44 127

    [19]

    Wu S Y, Tung C, Schwartz M 1974 J. Math. Phys.15 938

    [20]

    Wu S Y, Zheng Z B 1981 Prog. Phys. 1 125 (in Chinese) [吴式玉、郑兆勃 1981 物理学进展 1 125]

    [21]

    Wu S Y, Zheng Z B 1981 Phys. Rev. B 24 4787

    [22]

    Miller A, Abraham E 1960 Phys. Rev. 120 745

    [23]

    Ambegaokar V, Halperin B I, Langer J S 1971 Phys. Rev. B 4 2612

    [24]

    Fogler M M, Kelley R S 2005 Phys. Rev. Lett. 95 166604

    [25]

    Mcinnes J A, Butcher P N, Triberis G P 1990 J. Phys. Condens. Matter 2 7861

    [26]

    Galperin Y M 1999 Doped Semiconductors:Role of Disorder (Lectures at Lund University)

    [27]

    Xu H, Zeng H T 1992 Acta Phys. Sin. 41 1666(in Chinese) [徐 慧、曾红涛 1992 41 1666]

    [28]

    Pasveer W F, Bobbert P A, Huinink H P, Michels M A J 2005 Phys. Rev. B 72 174204

    [29]

    Lazaros K G, Bijan M, Laurens D A S 2003 Phys. Rev. B 67 165417

    [30]

    Rosenow B, Nattermann T 2006 Phys. Rev. B 73 085103

    [31]

    Ma S S, Xu H, Li Y F, Zhang P H 2007 Acta Phys. Sin. 56 5394(in Chinese) [马松山、徐 慧、李燕峰、张鹏华 2007 56 5394]

    [32]

    Ma S S, Xu H, Wang H Y, Guo R 2009 Chin. Phys. B 18 3591

  • [1] Zhou Ding-Bang, Liu Xin-Dian, Li Zhi-Qing. Electrical transport properties of polycrystalline TaN1- films. Acta Physica Sinica, 2015, 64(19): 197302. doi: 10.7498/aps.64.197302
    [2] Duan Ling, Hu Fei, Ding Jian-Wen. Effects of gradient disorder on electronic transport in quasi-one-dimensional nanowires. Acta Physica Sinica, 2011, 60(11): 117201. doi: 10.7498/aps.60.117201
    [3] Zhao Yi. Localization in the one-dimensional systems with long-range correlated disorder. Acta Physica Sinica, 2010, 59(1): 532-535. doi: 10.7498/aps.59.532
    [4] Xu Hui, Deng Chao-Sheng, Liu Xiao-Liang, Ma Song-Shan, Wu Xiao-Zan. The electronic states in one-dimensional disordered system with long-range correlations. Acta Physica Sinica, 2007, 56(3): 1643-1648. doi: 10.7498/aps.56.1643
    [5] Ma Song-Shan, Xu Hui, Li Yan-Feng, Zhang Peng-Hua. Characteristic of alternating current hopping conductivity in one-dimensional binary disordered system with off-diagonal correlations. Acta Physica Sinica, 2007, 56(9): 5394-5399. doi: 10.7498/aps.56.5394
    [6] Ma Song-Shan, Xu Hui, Liu Xiao-Liang, Wang Huan-You. Characteristics of hopping conductivity in one-dimensional binary disordered system with off-diagonal correlations. Acta Physica Sinica, 2007, 56(5): 2852-2857. doi: 10.7498/aps.56.2852
    [7] Liu Xiao-Liang, Xu Hui, Ma Song-Shan, Song Zhao-Quan, Deng Chao-Sheng. The electronic structure of quasi-two-dimensional disordered systems. Acta Physica Sinica, 2006, 55(5): 2492-2497. doi: 10.7498/aps.55.2492
    [8] Song Zhao-Quan, Xu Hui, Li Yan-Feng, Liu Xiao-Liang. The effects of non-diagonal disorder and dimensions in low-dimensional disordered electronic system. Acta Physica Sinica, 2005, 54(5): 2198-2201. doi: 10.7498/aps.54.2198
    [9] Tao Xiang-Ming, Xia A-Gen, Ye Gao-Xiang. Anomalous hopping and tunneling effects on the conductivity ofa wedge-shaped Au film system. Acta Physica Sinica, 2004, 53(1): 239-243. doi: 10.7498/aps.53.239
    [10] Xu Hui, Song Wei-Pu, Li Xin-Mei. . Acta Physica Sinica, 2002, 51(1): 143-147. doi: 10.7498/aps.51.143
    [11] Xu Hui, Song Wei-Fu. . Acta Physica Sinica, 2002, 51(8): 1798-1803. doi: 10.7498/aps.51.1798
    [12] ZUO DU-LUO, LI DAO-HUO. SITE-DIAGONAL DISORDER AND OFF-DIAGONAL DISO-RDER AMORPHOUS QUANTUM DOTS ON DIAMOND LATTICE. Acta Physica Sinica, 1994, 43(6): 991-999. doi: 10.7498/aps.43.991
    [13] JIANG QI, GONG CHANG-DE. THE INFLUENCE OF INTERVALLEY IMPURITY SCATTERING ON THE CONDUCTIVITIES OF THE DISORDERED LAYER SYSTEM. Acta Physica Sinica, 1989, 38(4): 600-606. doi: 10.7498/aps.38.600
    [14] JIANG QI, GONG CHANG-DE. A SELF-CONSISTENT STUDY OF THE CONDUCTIVITIES OF THE DISORDERED LAYER SYSTEM. Acta Physica Sinica, 1989, 38(4): 593-599. doi: 10.7498/aps.38.593
    [15] PANG GEN-DI, CAI JIAN-HUA. PHONON LOCALIZATION IN INHOMOGENEOUS DISORDERED SYSTEMS. Acta Physica Sinica, 1988, 37(4): 688-690. doi: 10.7498/aps.37.688
    [16] JIANG QI, GONG CHANG-DE. CONDUCTIVITY IN THE DISORDERED LAYER SYSTEM. Acta Physica Sinica, 1988, 37(6): 941-949. doi: 10.7498/aps.37.941
    [17] LI YAN-MIN, ZHANG LI-YUAN. EFFECT OF DIAGONAL DISORDER ON THE UPPER CRITICAL FIELD OF THE LOCAL ELECTRON PAIR SYSTEM. Acta Physica Sinica, 1988, 37(6): 1030-1035. doi: 10.7498/aps.37.1030
    [18] XIONG SHI-JIE, TAN MING-QIU. ELECTRONIC STRUCTURE IN ONE-DIMENSIONAL INCOMMENSURATELY MODULATED CHAINS WITH DISORDER. Acta Physica Sinica, 1987, 36(9): 1230-1234. doi: 10.7498/aps.36.1230
    [19] LI YAN-MIN, ZHANG LI-YUAN. EFFECT OF DIAGONAL DISORDER ON SUPERCONDUCTIVITY IN THE TRIPLET BIPOLARONIC SYSTEM. Acta Physica Sinica, 1987, 36(6): 796-800. doi: 10.7498/aps.36.796
    [20] . Acta Physica Sinica, 1965, 21(6): 1308-1312. doi: 10.7498/aps.21.1308
Metrics
  • Abstract views:  7696
  • PDF Downloads:  897
  • Cited By: 0
Publishing process
  • Received Date:  19 October 2009
  • Accepted Date:  17 November 2009
  • Published Online:  15 July 2010

/

返回文章
返回
Baidu
map