Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Computational prediction of lattice defects in multinary compound semiconductors as photovoltaic materials

Yuan Zhen-Kun Xu Peng Chen Shi-You

Citation:

Computational prediction of lattice defects in multinary compound semiconductors as photovoltaic materials

Yuan Zhen-Kun, Xu Peng, Chen Shi-You
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the past 60 years development of photovoltaic semiconductors, the number of component elements has increased steadily, i.e., from silicon in the 1950s, to GaAs and CdTe in the 1960s, to CuInSe2 in the 1970s, to Cu(In, Ga) Se2 in the 1980s, to Cu2ZnSnS4 in the 1990s, and to recent Cu2ZnSn(S, Se)4 and CH3NH3PbI3. Whereas the material properties become more flexible as a result of the increased number of elements, and multinary compound semiconductors feature a dramatic increase of possible point defects in the lattice, which can significantly influence the optical and electrical properties and ultimately the photovoltaic performance. It is challenging to characterize the various point defects and defect pairs experimentally. During the last 20 years, first-principles calculations based on density functional theory (DFT) have offered an alternative method of overcoming the difficulties in experimental study, and widely used in predicting the defect properties of semiconductors. Compared with the available experimental methods, the first-principles calculations are fast, direct and exact since all possible defects can be investigated one by one. This advantage is especially crucial in the study of multinary compound semiconductors which have a large number of possible defects. Through calculating the formation energies, concentration and transition (ionization) energy levels of various possible defects, we can study their influences on the device performance and then identify the dominant defects that are critical for the further optimization of the performance. In this paper, we introduce the first-principles calculation model and procedure for studying the point defects in materials. We focus on the hybrid scheme which combines the advantages of both special k-points and -point-only approaches. The shortcomings of the presentcalculation model are discussed, with the possible solutions proposed. And then, we review the recent progress in the study of the point defects in two types of multinary photovoltaic semiconductors, Cu2ZnSn(S,Se)4 and H3NH3PbI3. The result of the increased number of component elements involves various competing secondary phases, limiting the formation of single-phase multinary compound semiconductors. Unlike ternary CuInSe2, the dominant defect that determines the p-type conductivity in Cu2ZnSnS4 is Cu-on-Zn antisite (CuZn) defect rather than the copper vacancy (VCu). However, the ionization level of CuZn is deeper than that of VCu. The self-compensated defect pairs such as [2CuZn+SnZn] are easy to form in Cu2ZnSnS4, which causes band gap fluctuations and limits the Voc of Cu2ZnSnS4 cells. Additionally the formation energies of deep level defects, SnZn and VS, are not sufficiently high in Cu2ZnSnS4, leading to poor lifetime of minority carriers and hence low Voc. In order to enhance the formation of VCu and suppress the formation of CuZn as well as deep level defects, a Cu-poor/Zn-rich growth condition is required. Compared with Cu2ZnSnS4, the concentration of deep level defects is predicted to be low in Cu2ZnSnSe4, therefore, the devices fabricated based on the Se-rich Cu2ZnSn(S,Se)4 alloys exhibit better performances. Unlike Cu2ZnSnS4 cells, the CH3NH3PbI3 cells exhibit rather high Voc and long minority-carrier life time. The unusually benign defect physics of CH3NH3PbI3 is responsible for the remarkable performance of CH3NH3PbI3 cells. First, CH3NH3PbI3 shows that flexible conductivity is dependent on growth condition. This behavior is distinguished from common p-type photovoltaic semiconductor, in which the n-type doping is generally difficult. Second, in CH3NH3PbI3, defects with low formation energies create only shallow levels. Through controlling the carrier concentration (Fermi level) and growth condition, the formation of deep-level defect can be suppressed in CH3NH3PbI3. We conclude that the predicted results from the first-principles calculations are very useful for guiding the experimental study.
      Corresponding author: Chen Shi-You, chensy@ee.ecnu.edu.cn
    • Funds: Project supported by Basic Research Program of China (Grant No. 2012CB921401), the National Natural Science Foundation of China (Grant No. 91233121), and the Shanghai Rising-Star Program, China (Grant No. 14QA1401500).
    [1]

    Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676

    [2]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt.: Res. Appl. 23 1

    [3]

    Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier T M, Powalla M 2015 Phys. Status Solidi RRL 9 28

    [4]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465

    [5]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [6]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [7]

    Edri E, Kirmayer S, Mukhopadhyay S, Gartsman K, Hodes G, Cahen D 2014 Nature Commun. 5 3461

    [8]

    Umari P, Mosconi E, de Angelis F 2014 Sci. Rep. 4 4467

    [9]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [10]

    Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M, Moser J E 2014 Nat. Photon. 8 250

    [11]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [12]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [13]

    Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Grätzel M, Park N G 2013 Nano Lett. 13 2412

    [14]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506

    [15]

    Lang L, Yang J H, Liu H R, Xiang H, Gong X 2014 Phys. Lett. A 378 290

    [16]

    Xu P, Chen S, Xiang H J, Gong X G, Wei S H 2014 Chem. Mater. 26 6068

    [17]

    Walsh A, Scanlon D O, Chen S, Gong X G, Wei S H 2015 Angew. Chem. Int. Ed. 54 1791

    [18]

    Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522

    [19]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [20]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [22]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [23]

    Casida M E, Jamorski C, Casida K C, Salahub D R 1998 J. Chem. Phys. 108 4439

    [24]

    Zhang S B, Northrup J E 1991 Phys. Rev. Lett. 67 2339

    [25]

    ágoston P, Albe K, Nieminen R M, Puska M J 2009 Phys. Rev. Lett. 103 245501

    [26]

    Lany S, Zunger A 2011 Phys. Rev. Lett. 106 069601

    [27]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202

    [28]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, van de Walle C G 2014 Rev. Mod. Phys. 86 253

    [29]

    Lany S, Zunger A 2008 Phys. Rev. B 78 235104

    [30]

    Wei S H 2004 Comput. Mater. Sci. 30 337

    [31]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [32]

    Jing T, Dai Y, Wei W, Ma X, Huang B 2014 Phys. Chem. Chem. Phys. 16 18596

    [33]

    Ma X, Dai Y, Huang B 2014 ACS Appl. Mater. Inter. 6 22815

    [34]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [35]

    Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 9642

    [36]

    Wei S H, Yan Y 2011 Advanced Calculations for Defects in Materials: Electronic Structure Methods 2 13

    [37]

    Yan Y F, Al-Jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912

    [38]

    Na-Phattalung S, Smith M F, Kim K, Du M H, Wei S H, Zhang S, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [39]

    Li X, Keyes B, Asher S, Zhang S, Wei S H, Coutts T J, Limpijumnong S, van de Walle C G 2005 Appl. Phys. Lett. 86 122107

    [40]

    Chen S, Yang J H, Gong X, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204

    [41]

    Yin W J, Wei S H, Al-Jassim M M, Turner J, Yan Y 2011 Phys. Rev. B 83 155102

    [42]

    Ma J, Wei S H, Gessert T, Chin K K 2011 Phys. Rev. B 83 245207

    [43]

    Li J, Wei S H, Li S S, Xia J B 2008 Phys. Rev. B 77 113304

    [44]

    Walsh A, Da Silva J L, Wei S H, Körber C, Klein A, Piper L, DeMasi A, Smith K E, Panaccione G, Torelli P 2008 Phys. Rev. Lett. 100 167402

    [45]

    Makov G, Payne M 1995 Phys. Rev. B 51 4014

    [46]

    Lany S, Zunger A 2005 Phys. Rev. B 72 035215

    [47]

    Han D, Sun Y, Bang J, Zhang Y, Sun H B, Li X B, Zhang S 2013 Phys. Rev. B 87 155206

    [48]

    Deák P, Aradi B, Frauenheim T, Janzén E, Gali A 2010 Phys. Rev. B 81 153203

    [49]

    Lyons J L, Janotti A, van de Walle C G 2009 Appl. Phys. Lett. 95 252105

    [50]

    Ma J, Kuciauskas D, Albin D, Bhattacharya R, Reese M, Barnes T, Li J V, Gessert T, Wei S H 2013 Phys. Rev. Lett. 111 067402

    [51]

    Bang J, Sun Y Y, Abtew T A, Samanta A, Zhang P, Zhang S B 2013 Phys. Rev. B 88 035134

    [52]

    Tanaka K, Oonuki M, Moritake N, Uchiki H 2009 Sol. Energy Mater. Sol. Cells 93 583

    [53]

    Weber A, Schmidt S, Abou-Ras D, Schubert-Bischoff P, Denks I, Mainz R, Schock H-W 2009 Appl. Phys. Lett. 95 041904

    [54]

    Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R 2010 J. Am. Chem. Soc. 132 17384

    [55]

    Katagiri H, Jimbo K, Maw W S, Oishi K, Yamazaki M, Araki H, Takeuchi A 2009 Thin Solid Films 517 2455

    [56]

    Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw W S, Fukano T, Ito T, Motohiro T 2008 Appl. Phys. Express 1 041201

    [57]

    Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 Phys. Status Solidi b 245 1772

    [58]

    Cui H T, Liu X L, Liu F Y, Hao X J, Song N, Yan C 2014 Appl. Phys. Lett. 104 041115

    [59]

    Paier J, Asahi R, Nagoya A, Kresse G 2009 Phys. Rev. B 79 115126

    [60]

    Liu J, Choy K L, Placidi M, López‐García J, Saucedo E, Colombara D, Robert E 2015 Phys. Status Solidi a 212 135

    [61]

    Lin X, Ennaoui A, Levcenko S, Dittrich T, Kavalakkatt J, Kretzschmar S, Unold T, Lux-Steiner M C 2015 Appl. Phys. Lett. 106 013903

    [62]

    Ford G M, Guo Q, Agrawal R, Hillhouse H W 2011 Chem. Mater. 23 2626

    [63]

    Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S 2014 Adv. Mater. 26 7427

    [64]

    Gunawan O, Todorov T K, Mitzi D B 2010 Appl. Phys. Lett. 97 233506

    [65]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [66]

    Yin W J, Yang J H, Kang J, Yan Y F, Wei S H 2015 J. Mater. Chem. A 3 8926

    [67]

    Schubert B A, Marsen B, Cinque S, Unold T, Klenk R, Schorr S, Schock H W 2011 Prog. Photovolt.: Res. Appl. 19 93

    [68]

    Wang C, Chen S, Yang J H, Lang L, Xiang H J, Gong X G, Walsh A, Wei S H 2014 Chem. Mater. 26 3411

    [69]

    Todorov T K, Reuter K B, Mitzi D B 2010 Adv. Mater. 22 E156

    [70]

    Redinger A, Siebentritt S 2010 Appl. Phys. Lett. 97 092111

    [71]

    Fontané X, Calvo-Barrio L, Izquierdo-Roca V, Saucedo E, Pérez-Rodriguez A, Morante J, Berg D, Dale P, Siebentritt S 2011 Appl. Phys. Lett. 98 181905

    [72]

    Just J, Ltzenkirchen-Hecht D, Frahm R, Schorr S, Unold T 2011 Appl. Phys. Lett. 99 262105

    [73]

    Nagoya A, Asahi R, Wahl R, Kresse G 2010 Phys. Rev. B 81 113202

    [74]

    Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902

    [75]

    Chen S, Wang L W, Walsh A, Gong X G, Wei S H 2012 Appl. Phys. Lett. 101 223901

    [76]

    Schorr S, Hoebler H J, Tovar M 2007 Eur. J. Mineral. 19 65

    [77]

    Wang K, Gunawan O, Todorov T, Shin B, Chey S J, Bojarczuk N A, Mitzi D, Guha S 2010 Appl. Phys. Lett. 97 143508

    [78]

    Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S 2013 Prog. Photovolt.: Res. Appl. 21 72

    [79]

    Collord A D, Hillhouse H W 2015 Chem. Mater. 27 1855

    [80]

    Nagaoka A, Miyake H, Taniyama T, Kakimoto K, Yoshino K 2013 Appl. Phys. Lett. 103 112107

    [81]

    Levcenko S, Tezlevan V E, Arushanov E, Schorr S, Unold T 2012 Phys. Rev. B 86 045206

    [82]

    Shockley W, Read Jr W 1952 Phys. Rev. 87 835

    [83]

    Sites J, Pan J 2007 Thin Solid Films 515 6099

    [84]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [85]

    Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y, Huang J 2014 Appl. Phys. Lett. 105 163508

    [86]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903

    [87]

    Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249

    [88]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396

    [89]

    You J, Hong Z, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS Nano 8 1674

    [90]

    Kim J, Lee S H, Lee J H, Hong K H 2014 J. Phys. Chem. Lett. 5 1312

    [91]

    Du M H 2014 J. Mater. Chem. A 2 9091

    [92]

    Duan H S, Zhou H, Chen Q, Sun P, Luo S, Song T B, Bob B, Yang Y 2015 Phys. Chem. Chem. Phys. 17 112

    [93]

    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281

    [94]

    Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570

  • [1]

    Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676

    [2]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt.: Res. Appl. 23 1

    [3]

    Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier T M, Powalla M 2015 Phys. Status Solidi RRL 9 28

    [4]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465

    [5]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [6]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [7]

    Edri E, Kirmayer S, Mukhopadhyay S, Gartsman K, Hodes G, Cahen D 2014 Nature Commun. 5 3461

    [8]

    Umari P, Mosconi E, de Angelis F 2014 Sci. Rep. 4 4467

    [9]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [10]

    Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M, Moser J E 2014 Nat. Photon. 8 250

    [11]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [12]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [13]

    Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Grätzel M, Park N G 2013 Nano Lett. 13 2412

    [14]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506

    [15]

    Lang L, Yang J H, Liu H R, Xiang H, Gong X 2014 Phys. Lett. A 378 290

    [16]

    Xu P, Chen S, Xiang H J, Gong X G, Wei S H 2014 Chem. Mater. 26 6068

    [17]

    Walsh A, Scanlon D O, Chen S, Gong X G, Wei S H 2015 Angew. Chem. Int. Ed. 54 1791

    [18]

    Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522

    [19]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [20]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [22]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207

    [23]

    Casida M E, Jamorski C, Casida K C, Salahub D R 1998 J. Chem. Phys. 108 4439

    [24]

    Zhang S B, Northrup J E 1991 Phys. Rev. Lett. 67 2339

    [25]

    ágoston P, Albe K, Nieminen R M, Puska M J 2009 Phys. Rev. Lett. 103 245501

    [26]

    Lany S, Zunger A 2011 Phys. Rev. Lett. 106 069601

    [27]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202

    [28]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, van de Walle C G 2014 Rev. Mod. Phys. 86 253

    [29]

    Lany S, Zunger A 2008 Phys. Rev. B 78 235104

    [30]

    Wei S H 2004 Comput. Mater. Sci. 30 337

    [31]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [32]

    Jing T, Dai Y, Wei W, Ma X, Huang B 2014 Phys. Chem. Chem. Phys. 16 18596

    [33]

    Ma X, Dai Y, Huang B 2014 ACS Appl. Mater. Inter. 6 22815

    [34]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [35]

    Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 9642

    [36]

    Wei S H, Yan Y 2011 Advanced Calculations for Defects in Materials: Electronic Structure Methods 2 13

    [37]

    Yan Y F, Al-Jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912

    [38]

    Na-Phattalung S, Smith M F, Kim K, Du M H, Wei S H, Zhang S, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [39]

    Li X, Keyes B, Asher S, Zhang S, Wei S H, Coutts T J, Limpijumnong S, van de Walle C G 2005 Appl. Phys. Lett. 86 122107

    [40]

    Chen S, Yang J H, Gong X, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204

    [41]

    Yin W J, Wei S H, Al-Jassim M M, Turner J, Yan Y 2011 Phys. Rev. B 83 155102

    [42]

    Ma J, Wei S H, Gessert T, Chin K K 2011 Phys. Rev. B 83 245207

    [43]

    Li J, Wei S H, Li S S, Xia J B 2008 Phys. Rev. B 77 113304

    [44]

    Walsh A, Da Silva J L, Wei S H, Körber C, Klein A, Piper L, DeMasi A, Smith K E, Panaccione G, Torelli P 2008 Phys. Rev. Lett. 100 167402

    [45]

    Makov G, Payne M 1995 Phys. Rev. B 51 4014

    [46]

    Lany S, Zunger A 2005 Phys. Rev. B 72 035215

    [47]

    Han D, Sun Y, Bang J, Zhang Y, Sun H B, Li X B, Zhang S 2013 Phys. Rev. B 87 155206

    [48]

    Deák P, Aradi B, Frauenheim T, Janzén E, Gali A 2010 Phys. Rev. B 81 153203

    [49]

    Lyons J L, Janotti A, van de Walle C G 2009 Appl. Phys. Lett. 95 252105

    [50]

    Ma J, Kuciauskas D, Albin D, Bhattacharya R, Reese M, Barnes T, Li J V, Gessert T, Wei S H 2013 Phys. Rev. Lett. 111 067402

    [51]

    Bang J, Sun Y Y, Abtew T A, Samanta A, Zhang P, Zhang S B 2013 Phys. Rev. B 88 035134

    [52]

    Tanaka K, Oonuki M, Moritake N, Uchiki H 2009 Sol. Energy Mater. Sol. Cells 93 583

    [53]

    Weber A, Schmidt S, Abou-Ras D, Schubert-Bischoff P, Denks I, Mainz R, Schock H-W 2009 Appl. Phys. Lett. 95 041904

    [54]

    Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R 2010 J. Am. Chem. Soc. 132 17384

    [55]

    Katagiri H, Jimbo K, Maw W S, Oishi K, Yamazaki M, Araki H, Takeuchi A 2009 Thin Solid Films 517 2455

    [56]

    Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw W S, Fukano T, Ito T, Motohiro T 2008 Appl. Phys. Express 1 041201

    [57]

    Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 Phys. Status Solidi b 245 1772

    [58]

    Cui H T, Liu X L, Liu F Y, Hao X J, Song N, Yan C 2014 Appl. Phys. Lett. 104 041115

    [59]

    Paier J, Asahi R, Nagoya A, Kresse G 2009 Phys. Rev. B 79 115126

    [60]

    Liu J, Choy K L, Placidi M, López‐García J, Saucedo E, Colombara D, Robert E 2015 Phys. Status Solidi a 212 135

    [61]

    Lin X, Ennaoui A, Levcenko S, Dittrich T, Kavalakkatt J, Kretzschmar S, Unold T, Lux-Steiner M C 2015 Appl. Phys. Lett. 106 013903

    [62]

    Ford G M, Guo Q, Agrawal R, Hillhouse H W 2011 Chem. Mater. 23 2626

    [63]

    Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S 2014 Adv. Mater. 26 7427

    [64]

    Gunawan O, Todorov T K, Mitzi D B 2010 Appl. Phys. Lett. 97 233506

    [65]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [66]

    Yin W J, Yang J H, Kang J, Yan Y F, Wei S H 2015 J. Mater. Chem. A 3 8926

    [67]

    Schubert B A, Marsen B, Cinque S, Unold T, Klenk R, Schorr S, Schock H W 2011 Prog. Photovolt.: Res. Appl. 19 93

    [68]

    Wang C, Chen S, Yang J H, Lang L, Xiang H J, Gong X G, Walsh A, Wei S H 2014 Chem. Mater. 26 3411

    [69]

    Todorov T K, Reuter K B, Mitzi D B 2010 Adv. Mater. 22 E156

    [70]

    Redinger A, Siebentritt S 2010 Appl. Phys. Lett. 97 092111

    [71]

    Fontané X, Calvo-Barrio L, Izquierdo-Roca V, Saucedo E, Pérez-Rodriguez A, Morante J, Berg D, Dale P, Siebentritt S 2011 Appl. Phys. Lett. 98 181905

    [72]

    Just J, Ltzenkirchen-Hecht D, Frahm R, Schorr S, Unold T 2011 Appl. Phys. Lett. 99 262105

    [73]

    Nagoya A, Asahi R, Wahl R, Kresse G 2010 Phys. Rev. B 81 113202

    [74]

    Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902

    [75]

    Chen S, Wang L W, Walsh A, Gong X G, Wei S H 2012 Appl. Phys. Lett. 101 223901

    [76]

    Schorr S, Hoebler H J, Tovar M 2007 Eur. J. Mineral. 19 65

    [77]

    Wang K, Gunawan O, Todorov T, Shin B, Chey S J, Bojarczuk N A, Mitzi D, Guha S 2010 Appl. Phys. Lett. 97 143508

    [78]

    Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S 2013 Prog. Photovolt.: Res. Appl. 21 72

    [79]

    Collord A D, Hillhouse H W 2015 Chem. Mater. 27 1855

    [80]

    Nagaoka A, Miyake H, Taniyama T, Kakimoto K, Yoshino K 2013 Appl. Phys. Lett. 103 112107

    [81]

    Levcenko S, Tezlevan V E, Arushanov E, Schorr S, Unold T 2012 Phys. Rev. B 86 045206

    [82]

    Shockley W, Read Jr W 1952 Phys. Rev. 87 835

    [83]

    Sites J, Pan J 2007 Thin Solid Films 515 6099

    [84]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [85]

    Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y, Huang J 2014 Appl. Phys. Lett. 105 163508

    [86]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903

    [87]

    Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249

    [88]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396

    [89]

    You J, Hong Z, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S, Liu Y, Zhou H, Yang Y 2014 ACS Nano 8 1674

    [90]

    Kim J, Lee S H, Lee J H, Hong K H 2014 J. Phys. Chem. Lett. 5 1312

    [91]

    Du M H 2014 J. Mater. Chem. A 2 9091

    [92]

    Duan H S, Zhou H, Chen Q, Sun P, Luo S, Song T B, Bob B, Yang Y 2015 Phys. Chem. Chem. Phys. 17 112

    [93]

    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano Lett. 14 6281

    [94]

    Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570

  • [1] Li Huan-Ya, Zhou Ke, Yin Wan-Jian. Quantitative descriptor of lattice anharmonicity in crystal. Acta Physica Sinica, 2024, 73(5): 057101. doi: 10.7498/aps.73.20231428
    [2] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] Shi Xiao-Hong, Hou Bin-Peng, Li Zhi-Shuo, Chen Jing-Jin, Shi Xiao-Wen, Zhu Zi-Zhong. Formation of oxygen vacancy clusters in Li-rich Mn-based cathode Materials of lithium-ion batteries: First-principles calculations. Acta Physica Sinica, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [4] Huang Wen-Jun, Wang Ya-Ping, Cao Xin-Rui, Wu Shun-Qing, Zhu Zi-Zhong. Electronic structures and defect properties of lithium-rich manganese-based ternary material Li1.208Ni0.333Co0.042Mn0.417O2. Acta Physica Sinica, 2021, 70(20): 208201. doi: 10.7498/aps.70.20210398
    [5] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [6] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [7] Li Tian-Jing, Cao Xiu-Xia, Tang Shi-Hui, He Lin, Meng Chuan-Min. Crystal-orientation effects of the optical extinction in shocked Al2O3: a first-principles investigation. Acta Physica Sinica, 2020, 69(4): 046201. doi: 10.7498/aps.69.20190955
    [8] Yin Yuan, Li Ling, Yin Wan-Jian. Theoretical and computational study on defects of solar cell materials. Acta Physica Sinica, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [9] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [10] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [11] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [12] Bai Jing, Wang Xiao-Shu, Zu Qi-Rui, Zhao Xiang, Zuo Liang. Defect stabilities and magnetic properties of Ni-X-In (X= Mn, Fe and Co) alloys: a first-principle study. Acta Physica Sinica, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [13] Jiao Zhao-Yong, Guo Yong-Liang, Niu Yi-Jun, Zhang Xian-Zhou. The first principle study of electronic and optical properties of defect chalcopyrite XGa2S4 (X=Zn, Cd, Hg). Acta Physica Sinica, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [14] Li Xue-Mei, Han Hui-Lei, He Guang-Pu. Lattice dynamical, dielectric and thermodynamic properties of LiNH2 from first principles. Acta Physica Sinica, 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [15] Xin Xiao-Gui, Chen Xiang, Zhou Jing-Jing, Shi Si-Qi. A first principles study of the lattice dynamics property of LiFePO4. Acta Physica Sinica, 2011, 60(2): 028201. doi: 10.7498/aps.60.028201
    [16] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [17] Zhang Hua, Tang Yuan-Hao, Zhou Wei-Wei, Li Pei-Juan, Shi Si-Qi. Antisite defect of LiFePO4: A first-principles study. Acta Physica Sinica, 2010, 59(7): 5135-5140. doi: 10.7498/aps.59.5135
    [18] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [19] Liu Li-Hua, Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles study of the effects of Sr segregated on Al grain boundary. Acta Physica Sinica, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [20] Hou Qing-Yu, Zhang Yue, Chen Yue, Shang Jia-Xiang, Gu Jing-Hua. Effects of the concentration of oxygen vacancy of anatase on electric conducting performance studied by frist principles calculations. Acta Physica Sinica, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
Metrics
  • Abstract views:  7554
  • PDF Downloads:  737
  • Cited By: 0
Publishing process
  • Received Date:  04 May 2015
  • Accepted Date:  25 June 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map