搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝宝石冲击消光晶向效应的第一性原理

李恬静 操秀霞 唐士惠 何林 孟川民

引用本文:
Citation:

蓝宝石冲击消光晶向效应的第一性原理

李恬静, 操秀霞, 唐士惠, 何林, 孟川民

Crystal-orientation effects of the optical extinction in shocked Al2O3: a first-principles investigation

Li Tian-Jing, Cao Xiu-Xia, Tang Shi-Hui, He Lin, Meng Chuan-Min
PDF
HTML
导出引用
  • 蓝宝石的冲击消光现象是高压领域中的研究热点. 低压段(86 GPa范围内)的实验研究表明蓝宝石的冲击消光与晶向相关, 但在高压段(压力范围: 131—255 GPa)是否也具有晶向相关性目前尚不清楚. 为此, 利用第一性原理方法, 分别计算了八个不同晶向的蓝宝石理想晶体和含氧离子空位缺陷晶体在高压段的光吸收性质, 结果发现: 1)蓝宝石在高压段的冲击消光表现出明显的晶向效应, 且该效应还随压力增大而增强; 2)冲击诱导的氧离子空位缺陷对揭示这些晶向效应可能有重要作用, 而压力和温度因素对其贡献则较弱. 进一步的数据分析可以看出, 在冲击实验采用的波段内, a晶向的消光最弱(透明性最好), c晶向的消光最强(透明性最差), s晶向的消光介于它们二者之间, 同时, m晶向的消光与a晶向的消光相似, r, n, d晶向的消光与c晶向的消光接近, g晶向的消光要弱于s晶向的消光. 鉴于此, 如果在高压段开展加窗冲击波实验, 建议选择a晶向或m晶向的蓝宝石作为其光学窗口. 本文结果不仅有助于深入地认识蓝宝石在极端条件下的光学性质, 而且对未来的实验研究有重要的参考作用.
    Sapphires (Al2O3) is an important ceramic material with extensive applications in high-pressure technology and geoscience. For instance, it is often used as a window material in shock-wave experiments. Consequently, understanding the behavior of its transparency change under shock compression is crucial for correctly interpreting the experimental data. Sapphire has excellent transparency at ambient conditions, but its transparency is reduced under shock loading. This shock-induced optical extinction phenomenon in Al2O3 has been studied experimentally and theoretically a lot at present, but the knowledge on the crystal-orientation effects of the extinction is still insufficient. the experimental investigations at low-pressure region (within 86 GPa) have indicated that the shock-induced extinction in Al2O3 is related to its crystal orientation, but it is not clear whether the correlation also exists at high-pressure region (~131–255 GPa). Here, to investigate this question, we have performed first principles calculations of the optical absorption properties of a-, c-, d-, r-, n-, s-, g- and m-oriented Al2O3 crystals without and with $V_{\rm O}^{ + 2}$ (the +2 charged O vacancy) defects at the pressure range of 131–255 GPa. It is found that: 1) there are obvious crystal-orientation effects of the extinction in shocked Al2O3 at high-pressure region, and they strengthen with increasing pressure; 2) shock-induced $V_{\rm O}^{ + 2}$ defects could play an important role in determining these crystal-orientation effects, but the influences of pressure and temperature factors on them are relatively weak. A further analysis shows that, at the wavelength range adopted in shock experiments, the extinction of a-orientation is the weakest (the best transparency), the extinction of c-orientation is the strongest (the worst transparency), and the extinction of s-orientation is between them; at the same time, the extinction of m-orientation is similar to that of a-orientation, the extinction of r-, n- and d-orientations is close to that of c-orientation, and the extinction of g-orientation is weaker than that of s-orientation. In view of this, we suggest that the a- or m-oriented Al2O3 is chosen as an optical window in shock-wave experiments of the high-pressure region. Our predictions could be not only helpful to understand further the optical properties of Al2O3 at extreme conditions, but also important for future experimental study.
      通信作者: 何林, linhe63@163.com ; 孟川民, mcm901570@126.com
    • 基金项目: 国家级-国家自然科学基金课题资助(11602245和11872344)
      Corresponding author: He Lin, linhe63@163.com ; Meng Chuan-Min, mcm901570@126.com
    [1]

    Xu Y S, McCammon C, Poe B T 1998 Science 282 922Google Scholar

    [2]

    周显明, 汪小松, 李赛男, 李俊, 李加波, 经福谦 2007 56 4965Google Scholar

    Zhou X M, Wang X S, Li S N, Li J, Li J B, Jing F Q 2007 Acta Phys. Sin. 56 4965Google Scholar

    [3]

    Oganov A R, Ono S 2005 Proc. Natl. Acad. Sci. USA 102 10828Google Scholar

    [4]

    Ono S, Oganov A R, Koyama T, Shimizu H 2006 Earth Planet. Sci. Lett. 246 326Google Scholar

    [5]

    Lin J F, Degtyareva O, Prewitt C T, Dera P, Sata N, Gregoryanz E, Mao H K, Hemley R J 2004 Nat. Mater. 3 389Google Scholar

    [6]

    操秀霞 2011 硕士学位论文 (成都: 四川大学)

    Cao X X 2011 M. S. Thesis (Chengdu: Sichuan University) (in Chinese)

    [7]

    Zhang D Y, Liu F S, Hao G Y, Sun Y H 2007 Chin. Phys. Lett. 24 2341Google Scholar

    [8]

    唐士惠, 操秀霞, 何林, 祝文军 2016 65 202

    Tang S H, Cao X X, He L, Zhu W J 2016 Acta Phys. Sin. 65 202

    [9]

    He L, Tang M J, Fang Y, Jing F Q 2008 Europhys. Lett. 83 39001Google Scholar

    [10]

    张岱宇, 郝高宇, 张明建, 刘福生 2007 人工晶体学报 36 531Google Scholar

    Zhang D Y, Hao G Y, Zhang M J, Liu F S 2007 Journal of Synthetic Crystals 36 531Google Scholar

    [11]

    Kanel G I, Nellis W J, Savinykh A S, Razorenov S V, Rajendran A M 2009 J. Appl. Phys. 106 043524Google Scholar

    [12]

    Fat’yanov O V, Webb R L, Gupta Y M 2005 J. Appl. Phys. 97 123529Google Scholar

    [13]

    Hare D E, Webb D J, Lee S H, Holmes N C 2002 Optical Extinction of Sapphire Shock‐Loaded to 250−260 GPa. In Shock Compression of Condensed Matter-2001: 12th APS Topical Conference Atlanta, USA, June 24−29, 2001 p1231

    [14]

    Kwiatkowski C S, Gupta Y M 2000 Optical Measurements to Probe Inelastic Deformation in Shocked Brittle Materials. Shock Compression of Condensed Matter-1999 (New York: Elsevier Science Publishers) pp641−644

    [15]

    Umemoto K, Wentzcovitch R M 2008 Proc. Natl. Acad. Sci. USA 105 6526Google Scholar

    [16]

    He L, Tang M J, Yin J, Zhou X M, Zhu W J, Liu F S, He D W 2012 Physica B 407 694Google Scholar

    [17]

    He L, Tang M J, Zeng M F, Zhou X M, Zhu W J, Liu F S 2013 Physica B 410 137Google Scholar

    [18]

    何旭, 何林, 唐明杰, 徐明 2011 60 026102Google Scholar

    He X, He L, Tang M J, Xu M 2011 Acta Phys. Sin. 60 026102Google Scholar

    [19]

    Cao X X, Wang Y, Li X H, Xu L, Liu L X, Yu Y, Qin R, Zhu W J, Tang S H, He L, Meng C M, Zhang B T, Peng X S 2017 J. Appl. Phys. 121 115903Google Scholar

    [20]

    Weir S T, Mitchell A C, Nellis W J 1996 J. Appl. Phys. 80 1522Google Scholar

    [21]

    Meyers M A 1994 Dynamic Behavior of Materials (New York: Wiley-IEEE) p413

    [22]

    Hicks D G, Celliers P M, Collins G W, Eggert J H, Moon S J 2003 Phys. Rev. Lett. 91 035502Google Scholar

    [23]

    Liu Y, Oganov A R, Wang S, Zhu Q, Dong X, Kresse G 2015 Sci. Rep. 5 9518Google Scholar

    [24]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley: University of California Press)

    [25]

    Liu H, Tse J S, Nellis W J 2015 Sci. Rep. 5 12823Google Scholar

    [26]

    Matsunaga K, Tanaka T, Yamamoto T, Lkuhara Y 2003 Phys. Rev. B 68 085110Google Scholar

    [27]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. : Condens. Matter 14 2717Google Scholar

    [28]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [29]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768Google Scholar

    [32]

    贾婉丽, 周淼, 王馨梅, 纪卫莉 2018 67 107102Google Scholar

    Jia W L, Zhou M, Wang X M, Ji W L 2018 Acta Phys. Sin. 67 107102Google Scholar

    [33]

    Brown G F, Wu J Q 2009 Laser Photon. Rev. 3 394Google Scholar

    [34]

    Ching W Y, Xu Y N 1994 J. Am. Ceram. Soc. 77 404Google Scholar

    [35]

    Wu J, Walukiewicz W, Shan W, Yu K M, Ager Ⅲ J W, Li S X, Haller E E, Lu H, Schaff W J 2003 J. Appl. Phys. 94 4457Google Scholar

    [36]

    French R H 1990 J. Am. Ceram. Soc. 73 477Google Scholar

    [37]

    Holm B, Ahuja R, Yourdshahyan Y, Johansson B, Lundqvist B I 1999 Phys. Rev. B 59 12777Google Scholar

  • 图 1  八种晶向 CalrO3-Al2O3的吸收光谱随冲击压力变化的规律(a, c, d, r, n, s, g 和 m 分别表示 a, c, d, r, n, s, g 和 m 晶向, 计算数据已做了冲击温度修正) (a) 在两个压力点分别采用较高缺陷浓度模型的计算数据(内嵌图为理想晶体数据的放大图); (b) 在两个压力点分别采用较低缺陷浓度模型的计算数据

    Fig. 1.  Shock-pressure dependence of the optical absorption spectra for CalrO3-Al2O3 with eight crystallographic orientations (a, c, d, r, n, s, g and m indicate a, c, d, r, n, s, g and m orientations, respectively. The calculated data have been corrected by shock temperature): (a) Data calculated with higher defective concentration model at 131.2 GPa and 255 GPa (the inserted figure shows perfect-crystal data); (b) data calculated with lower defective concentration model at 131.2 GPa and 255 GPa.

    图 2  八种晶向 CalrO3-Al2O3的理想晶体吸收光谱随压力变化的规律(a, c, d, r, n, s, g和m分别表示a, c, d, r, n, s, g和 m 晶向)

    Fig. 2.  Pressure dependence of the optical absorption spectra for perfect CalrO3-Al2O3 with eight crystallographic orientations (a, c, d, r, n, s, g and m indicate a, c, d, r, n, s, g and m orientations, respectively).

    图 3  冲击温度和空位点缺陷对八种晶向CalrO3-Al2O3高压吸收光谱的影响(a, c, d, r, n, s, g和m分别表示a, c, d, r, n, s, g和 m 晶向)

    Fig. 3.  Effects of the shock temperature and vacancy point defect on the high-pressure optical absorption spectra for CalrO3-Al2O3 with eight crystallographic orientations (a, c, d, r, n, s, g and m indicate a, c, d, r, n, s, g and m orientations, respectively).

    图 4  两个不同晶向 CalrO3-Al2O3在 255 GPa 处的冲击吸收光谱的计算数据和冲击消光系数的实测数据(c 和 r 分别表示 c 晶向和 r 晶向, 计算数据已做了冲击温度修正)

    Fig. 4.  The calculated optical absorption spectra and the measured extinction coefficients for CalrO3-Al2O3 with two crystallographic orientations at shock pressure of 255 GPa (c and r indicate c and r orientations, respectively. The calculated data have been corrected by shock temperature).

    Baidu
  • [1]

    Xu Y S, McCammon C, Poe B T 1998 Science 282 922Google Scholar

    [2]

    周显明, 汪小松, 李赛男, 李俊, 李加波, 经福谦 2007 56 4965Google Scholar

    Zhou X M, Wang X S, Li S N, Li J, Li J B, Jing F Q 2007 Acta Phys. Sin. 56 4965Google Scholar

    [3]

    Oganov A R, Ono S 2005 Proc. Natl. Acad. Sci. USA 102 10828Google Scholar

    [4]

    Ono S, Oganov A R, Koyama T, Shimizu H 2006 Earth Planet. Sci. Lett. 246 326Google Scholar

    [5]

    Lin J F, Degtyareva O, Prewitt C T, Dera P, Sata N, Gregoryanz E, Mao H K, Hemley R J 2004 Nat. Mater. 3 389Google Scholar

    [6]

    操秀霞 2011 硕士学位论文 (成都: 四川大学)

    Cao X X 2011 M. S. Thesis (Chengdu: Sichuan University) (in Chinese)

    [7]

    Zhang D Y, Liu F S, Hao G Y, Sun Y H 2007 Chin. Phys. Lett. 24 2341Google Scholar

    [8]

    唐士惠, 操秀霞, 何林, 祝文军 2016 65 202

    Tang S H, Cao X X, He L, Zhu W J 2016 Acta Phys. Sin. 65 202

    [9]

    He L, Tang M J, Fang Y, Jing F Q 2008 Europhys. Lett. 83 39001Google Scholar

    [10]

    张岱宇, 郝高宇, 张明建, 刘福生 2007 人工晶体学报 36 531Google Scholar

    Zhang D Y, Hao G Y, Zhang M J, Liu F S 2007 Journal of Synthetic Crystals 36 531Google Scholar

    [11]

    Kanel G I, Nellis W J, Savinykh A S, Razorenov S V, Rajendran A M 2009 J. Appl. Phys. 106 043524Google Scholar

    [12]

    Fat’yanov O V, Webb R L, Gupta Y M 2005 J. Appl. Phys. 97 123529Google Scholar

    [13]

    Hare D E, Webb D J, Lee S H, Holmes N C 2002 Optical Extinction of Sapphire Shock‐Loaded to 250−260 GPa. In Shock Compression of Condensed Matter-2001: 12th APS Topical Conference Atlanta, USA, June 24−29, 2001 p1231

    [14]

    Kwiatkowski C S, Gupta Y M 2000 Optical Measurements to Probe Inelastic Deformation in Shocked Brittle Materials. Shock Compression of Condensed Matter-1999 (New York: Elsevier Science Publishers) pp641−644

    [15]

    Umemoto K, Wentzcovitch R M 2008 Proc. Natl. Acad. Sci. USA 105 6526Google Scholar

    [16]

    He L, Tang M J, Yin J, Zhou X M, Zhu W J, Liu F S, He D W 2012 Physica B 407 694Google Scholar

    [17]

    He L, Tang M J, Zeng M F, Zhou X M, Zhu W J, Liu F S 2013 Physica B 410 137Google Scholar

    [18]

    何旭, 何林, 唐明杰, 徐明 2011 60 026102Google Scholar

    He X, He L, Tang M J, Xu M 2011 Acta Phys. Sin. 60 026102Google Scholar

    [19]

    Cao X X, Wang Y, Li X H, Xu L, Liu L X, Yu Y, Qin R, Zhu W J, Tang S H, He L, Meng C M, Zhang B T, Peng X S 2017 J. Appl. Phys. 121 115903Google Scholar

    [20]

    Weir S T, Mitchell A C, Nellis W J 1996 J. Appl. Phys. 80 1522Google Scholar

    [21]

    Meyers M A 1994 Dynamic Behavior of Materials (New York: Wiley-IEEE) p413

    [22]

    Hicks D G, Celliers P M, Collins G W, Eggert J H, Moon S J 2003 Phys. Rev. Lett. 91 035502Google Scholar

    [23]

    Liu Y, Oganov A R, Wang S, Zhu Q, Dong X, Kresse G 2015 Sci. Rep. 5 9518Google Scholar

    [24]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley: University of California Press)

    [25]

    Liu H, Tse J S, Nellis W J 2015 Sci. Rep. 5 12823Google Scholar

    [26]

    Matsunaga K, Tanaka T, Yamamoto T, Lkuhara Y 2003 Phys. Rev. B 68 085110Google Scholar

    [27]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. : Condens. Matter 14 2717Google Scholar

    [28]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [29]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768Google Scholar

    [32]

    贾婉丽, 周淼, 王馨梅, 纪卫莉 2018 67 107102Google Scholar

    Jia W L, Zhou M, Wang X M, Ji W L 2018 Acta Phys. Sin. 67 107102Google Scholar

    [33]

    Brown G F, Wu J Q 2009 Laser Photon. Rev. 3 394Google Scholar

    [34]

    Ching W Y, Xu Y N 1994 J. Am. Ceram. Soc. 77 404Google Scholar

    [35]

    Wu J, Walukiewicz W, Shan W, Yu K M, Ager Ⅲ J W, Li S X, Haller E E, Lu H, Schaff W J 2003 J. Appl. Phys. 94 4457Google Scholar

    [36]

    French R H 1990 J. Am. Ceram. Soc. 73 477Google Scholar

    [37]

    Holm B, Ahuja R, Yourdshahyan Y, Johansson B, Lundqvist B I 1999 Phys. Rev. B 59 12777Google Scholar

  • [1] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理.  , 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [2] 王奇, 唐法威, 侯超, 吕皓, 宋晓艳. W-In体系溶质晶界偏聚行为的第一性原理计算.  , 2019, 68(7): 077101. doi: 10.7498/aps.68.20190056
    [3] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算.  , 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [4] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究.  , 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [5] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应.  , 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [6] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究.  , 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [7] 唐士惠, 操秀霞, 何林, 祝文军. 空位缺陷和相变对冲击压缩下蓝宝石光学性质的影响.  , 2016, 65(14): 146201. doi: 10.7498/aps.65.146201
    [8] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算.  , 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [9] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究.  , 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [10] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究.  , 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [11] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究.  , 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [12] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究.  , 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [13] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究.  , 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [14] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究.  , 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [15] 张宁超, 刘福生, 彭小娟, 陈源福, 王军国, 张明建, 薛学东. 40—60 GPa冲击加载下蓝宝石发光机理研究.  , 2012, 61(22): 226501. doi: 10.7498/aps.61.226501
    [16] 邓杨, 王如志, 徐利春, 房慧, 严辉. 立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究.  , 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [17] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算.  , 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [18] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算.  , 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
    [19] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能.  , 2006, 55(1): 472-476. doi: 10.7498/aps.55.472
    [20] 孙 博, 刘绍军, 祝文军. Fe在高压下第一性原理计算的芯态与价态划分.  , 2006, 55(12): 6589-6594. doi: 10.7498/aps.55.6589
计量
  • 文章访问数:  7316
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-19
  • 修回日期:  2019-12-13
  • 刊出日期:  2020-02-20

/

返回文章
返回
Baidu
map