Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Changes of stress and luminescence properties in GaN-based LED films before and after transferring the films to a flexible layer on a submount from the silicon epitaxial substrate

Huang Bin-Bin Xiong Chuan-Bing Tang Ying-Wen Zhang Chao-Yu Huang Ji-Feng Wang Guang-Xu Liu Jun-Lin Jiang Feng-Yi

Citation:

Changes of stress and luminescence properties in GaN-based LED films before and after transferring the films to a flexible layer on a submount from the silicon epitaxial substrate

Huang Bin-Bin, Xiong Chuan-Bing, Tang Ying-Wen, Zhang Chao-Yu, Huang Ji-Feng, Wang Guang-Xu, Liu Jun-Lin, Jiang Feng-Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to the lack of GaN substrates, hetero-epitaxial growth of GaN thin films is usually carried out on a foreign substrate. There are three kinds of substrate for GaN: sapphire, silicon carbide, and silicon; the sapphire substrate is the chief one, currently. Due to the availability of large scale and low cost of Si substrates, in recent years, extensive research has been devoted to the development of gallium nitride (GaN) optoelectronic devices on silicon substrates. Because of the large lattice mismatch and thermal-expansion cofficient difference between Si and GaN, it is difficult to grow thick enough crack-free GaN LED film on Si substrates. The two main kinds of methods for overcoming the crack problem are using the patterned Si substate and the thick AlGaN buffer layer. Although the two techniques could solve the problem of crack by cooling after growth, they will lead to an increase in tensile stress for GaN on Si. When making vertical-structured LED devices by transferring the GaN-based LED thin films from Si substrate to a new submount, this tensile stress will be partially released; but few researches have been made about the stress change before and after the transfer of the film, although the stress in GaN is an important factor that alters the energy band structure and may influence the vibrational properties. In this paper, we grow the crack-free GaN-based LED films on patterned Si(111), then light-emitting diode (LED) thin films are successfully transferred from the original Si (111) substrate to the submount with a flexible layer, and then the LED films without the influence of the submount and substrate are fabricated. In the following experiments, the strain-stress variation of the LED film is determined by using nondestructive high resolution X-ray diffraction (HRXRD) in detail, and the variation of photoluminescence (PL) properties of the film is studied too. Results obtained are as follows: 1) When the LED film is transferred to the flexible submount, the huge tensile stress will turn into compressive stress, and the latter in the InGaN layers will increase. 2) The In concentration in the (InGaN/GaN) MQW (multi-quantum well) systems can be evaluated with the help of reciprocal space maps (RSM) around the symmetric (0002) and asymmetric (1015) Bragg reflections. The In concentration in (InGaN/GaN) MQW will reduce when the GaN-based LED film is transferred to the flexible submount. 3) The PL spectra of the LED films will obviously appear red shift, after they are transferred to the flexible submount.
      Corresponding author: Xiong Chuan-Bing, chuanbingxiong@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51072076, 11364034, 61334001, 21406076, 61040060), the National High Technology Research and Development Program of China (Grant Nos. 2011AA03A101, 2012AA041002), and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2011BAE32B01).
    [1]

    McCluskey M D, Van de Walle C G, Master C P, Romano L T, Johnson N M 1998 Appl. Phys. Lett. 72 2725

    [2]

    Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325

    [3]

    Pereira S, Correia M R, Monteiro T, Pereira E, Alves E, Sequeira A D, Franco N 2001 Appl. Phys. Lett. 78 2137

    [4]

    Kong H S, James I, Edmond J 2014 Phys. Status Solidi C 11 621

    [5]

    Okuno K, Oshio T, Shibata N, Honda Y, Yamaguchi M, Amano H 2014 Phys. Status Solidi C 11 722

    [6]

    Tang J J, Liang T, Shi W L, Zhang Q Q, Wang Y, Liu J, Xiong J J 2011 Appl. Surf. Sci. 257 8846

    [7]

    Perlin P, Mattos L, Shapiro N A, Kruger J, Wong W S, Sands T, Cheung N W, Weber E R 1999 J. Appl. Phys. 85 2385

    [8]

    Li Y L, Huang Y R, Lai Y H 2007 Appl. Phys. Lett. 91 181113

    [9]

    Huang B B, Xiong C B, Zhang C Y, Huang J F, Wang G X, Tang Y W, Quan Z J, Xu L Q, Zhang M, Wang L, Fang W Q, Liu J L, Jiang F Y 2014 Acta Phys. Sin. 63 217806 (in Chinese) [黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益 2014 63 217806]

    [10]

    Park J, Goto T, Yao T, Lee S, Cho M 2013 J. Phys. D: Appl. Phys. 46 155104

    [11]

    Zhao D G, Xu S J, Xie M H, Tong S Y, Hui Y 2003 Appl. Phys. Lett. 83 677

    [12]

    Wong W S, Sands T, Cheung N W, Kneissl M, Bour D P, Mei P, Romano L T, Johnson N M 1999 Appl. Phys. Lett. 75 1360

    [13]

    Stach E A, Kelsch M, Nelson E, Wong W S, Sands T, Cheung N W 2000 Appl. Phys. Lett. 77 1819

    [14]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F 2005 J. Cryst. Growth 285 312

    [15]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 莫春兰 2008 57 3176]

    [16]

    Xiong Y J, Zhang M, Xiong C B, Xiao Z H, Wang G X, Wang Y M, Jiang F Y 2010 Chin. J. Lumin. 31 531 (in Chinese) [熊贻婧, 张萌, 熊传兵, 肖宗湖, 王光绪, 汪延明, 江风益 2010 发光学报 31 531]

    [17]

    Moram M A, Vickers M E 2009 Rep. Prog. Phys. 72 036502

    [18]

    Paszkowicz W 1999 Powder Diffr. 14 258

    [19]

    Ishikawa H, Zhao G Y, Nakada N, Egawa T, Jimbo T, Umeno M 1999 Jpn. J. Appl. Phys. 38 L492

    [20]

    Bläsing J, Reiher A, Dadgar A, Diez A, Krost A 2002 Appl. Phys. Lett. 81 2722

    [21]

    Wu M F, Zhou S Q, Yao S D, Zhao Q, Vantomme A 2004 J. Vac. Sci. Technol. B 22 921

    [22]

    Roesener T, Klinger V, Weuffen C, Lackner D, Dimroth F 2013 J. Cryst. Growth 368 21

    [23]

    Dobrovolskas D, Vaitkevičius A, Mickevičius J, Tuna Ö, Giesen C, Heuken M, Tamulaitis G 2013 J. Appl. Phys. 114 163516

    [24]

    Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Franco N, Watson I M, Deatcher C J 2002 Appl. Phys. Lett. 80 3913

    [25]

    Detchprohm T, Hiramatsu K, Itoh K, Akasaki I 1992 Jpn. J. Appl. Phys. 31 L1454

    [26]

    Wright A F 1997 J. Appl. Phys. 82 2833

    [27]

    Wu M, Zhang B S, Chen J, Liu J P, Shen X M, Zhao D G, Zhang J C, Wang J F, Li N, Jin R Q, Zhu J J, Yang H 2004 J. Cryst. Growth 260 331

    [28]

    Tawfik W Z, Song J, Lee J J, Ha J S, Ryu S W, Choi H S, Ryu B, Lee J K 2013 Appl. Surf. Sci. 283 727

  • [1]

    McCluskey M D, Van de Walle C G, Master C P, Romano L T, Johnson N M 1998 Appl. Phys. Lett. 72 2725

    [2]

    Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325

    [3]

    Pereira S, Correia M R, Monteiro T, Pereira E, Alves E, Sequeira A D, Franco N 2001 Appl. Phys. Lett. 78 2137

    [4]

    Kong H S, James I, Edmond J 2014 Phys. Status Solidi C 11 621

    [5]

    Okuno K, Oshio T, Shibata N, Honda Y, Yamaguchi M, Amano H 2014 Phys. Status Solidi C 11 722

    [6]

    Tang J J, Liang T, Shi W L, Zhang Q Q, Wang Y, Liu J, Xiong J J 2011 Appl. Surf. Sci. 257 8846

    [7]

    Perlin P, Mattos L, Shapiro N A, Kruger J, Wong W S, Sands T, Cheung N W, Weber E R 1999 J. Appl. Phys. 85 2385

    [8]

    Li Y L, Huang Y R, Lai Y H 2007 Appl. Phys. Lett. 91 181113

    [9]

    Huang B B, Xiong C B, Zhang C Y, Huang J F, Wang G X, Tang Y W, Quan Z J, Xu L Q, Zhang M, Wang L, Fang W Q, Liu J L, Jiang F Y 2014 Acta Phys. Sin. 63 217806 (in Chinese) [黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益 2014 63 217806]

    [10]

    Park J, Goto T, Yao T, Lee S, Cho M 2013 J. Phys. D: Appl. Phys. 46 155104

    [11]

    Zhao D G, Xu S J, Xie M H, Tong S Y, Hui Y 2003 Appl. Phys. Lett. 83 677

    [12]

    Wong W S, Sands T, Cheung N W, Kneissl M, Bour D P, Mei P, Romano L T, Johnson N M 1999 Appl. Phys. Lett. 75 1360

    [13]

    Stach E A, Kelsch M, Nelson E, Wong W S, Sands T, Cheung N W 2000 Appl. Phys. Lett. 77 1819

    [14]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F 2005 J. Cryst. Growth 285 312

    [15]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 莫春兰 2008 57 3176]

    [16]

    Xiong Y J, Zhang M, Xiong C B, Xiao Z H, Wang G X, Wang Y M, Jiang F Y 2010 Chin. J. Lumin. 31 531 (in Chinese) [熊贻婧, 张萌, 熊传兵, 肖宗湖, 王光绪, 汪延明, 江风益 2010 发光学报 31 531]

    [17]

    Moram M A, Vickers M E 2009 Rep. Prog. Phys. 72 036502

    [18]

    Paszkowicz W 1999 Powder Diffr. 14 258

    [19]

    Ishikawa H, Zhao G Y, Nakada N, Egawa T, Jimbo T, Umeno M 1999 Jpn. J. Appl. Phys. 38 L492

    [20]

    Bläsing J, Reiher A, Dadgar A, Diez A, Krost A 2002 Appl. Phys. Lett. 81 2722

    [21]

    Wu M F, Zhou S Q, Yao S D, Zhao Q, Vantomme A 2004 J. Vac. Sci. Technol. B 22 921

    [22]

    Roesener T, Klinger V, Weuffen C, Lackner D, Dimroth F 2013 J. Cryst. Growth 368 21

    [23]

    Dobrovolskas D, Vaitkevičius A, Mickevičius J, Tuna Ö, Giesen C, Heuken M, Tamulaitis G 2013 J. Appl. Phys. 114 163516

    [24]

    Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Franco N, Watson I M, Deatcher C J 2002 Appl. Phys. Lett. 80 3913

    [25]

    Detchprohm T, Hiramatsu K, Itoh K, Akasaki I 1992 Jpn. J. Appl. Phys. 31 L1454

    [26]

    Wright A F 1997 J. Appl. Phys. 82 2833

    [27]

    Wu M, Zhang B S, Chen J, Liu J P, Shen X M, Zhao D G, Zhang J C, Wang J F, Li N, Jin R Q, Zhu J J, Yang H 2004 J. Cryst. Growth 260 331

    [28]

    Tawfik W Z, Song J, Lee J J, Ha J S, Ryu S W, Choi H S, Ryu B, Lee J K 2013 Appl. Surf. Sci. 283 727

  • [1] Liu Qing-Bin, Yu Cui, Guo Jian-Chao, Ma Meng-Yu, He Ze-Zhao, Zhou Chuang-Jie, Gao Xue-Dong, Yu Hao, Feng Zhi-Hong. Influence of polycrystalline diamond on silicon-based GaN material. Acta Physica Sinica, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [2] Lei Zhen-Shuai, Sun Xiao-Wei, Liu Zi-Jiang, Song Ting, Tian Jun-Hong. Phase diagram prediction and high pressure melting characteristics of GaN. Acta Physica Sinica, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [3] Yuan Ying-Kuo, Guo Wei-Ling, Du Zai-Fa, Qian Feng-Song, Liu Ming, Wang Le, Xu Chen, Yan Qun, Sun Jie. Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode. Acta Physica Sinica, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [4] Xie Fei, Zang Hang, Liu Fang, He Huan, Liao Wen-Long, Huang Yu. Simulated research on displacement damage of gallium nitride radiated by different neutron sources. Acta Physica Sinica, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [5] Shi Qiang, Li Lu-Ping, Zhang Yong-Hui, Zhang Zi-Hui, Bi Wen-Gang. Identifying the influence of GaN/InxGa1-xN type last quantum barrier on internal quantum efficiency for III-nitride based light-emitting diode. Acta Physica Sinica, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [6] Feng Bo, Deng Biao, Liu Le-Gong, Li Zeng-Cheng, Feng Mei-Xin, Zhao Han-Min, Sun Qian. Effect of plasma surface treatment on embedded n-contact for GaN-based blue light-emitting diodes grown on Si substrate. Acta Physica Sinica, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [7] Mao Qing-Hua, Liu Jun-Lin, Quan Zhi-Jue, Wu Xiao-Ming, Zhang Meng, Jiang Feng-Yi. Influences of p-type layer structure and doping profile on the temperature dependence of the foward voltage characteristic of GaInN light-emitting diode. Acta Physica Sinica, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [8] Zhang Chao-Yu, Xiong Chuan-Bing, Tang Ying-Wen, Huang Bin-Bin, Huang Ji-Feng, Wang Guang-Xu, Liu Jun-Lin, Jiang Feng-Yi. Changes of micro zone luminescent properties and stress of GaN-based light emitting diode film grown on patterned silicon substrate, induced by the removal of the substrate and AlN buffer layer. Acta Physica Sinica, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [9] Wang Jian, Xie Zi-Li, Zhang Rong, Zhang Yun, Liu Bin, Chen Peng, Han Ping. Study on the photoluminescence properties of InN films. Acta Physica Sinica, 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [10] Liu Mu-Lin, Min Qiu-Ying, Ye Zhi-Qing. Efficiency droop in blue InGaN/GaN light emitting diodes on Si substrate. Acta Physica Sinica, 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [11] Cheng Sai, Lü Hui-Min, Shi Zhen-Hai, Cui Jing-Ya. Growth and photoluminescence character research of aluminum nitride nanowires upon carbon foam substrate. Acta Physica Sinica, 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [12] Wang Guang-Xu, Tao Xi-Xia, Xiong Chuan-Bing, Liu Jun-Lin, Feng Fei-Fei, Zhang Meng, Jiang Feng-Yi. Effects of Ni-assisted annealing on p-type contact resistivity of GaN-based LED films grown on Si(111) substrates. Acta Physica Sinica, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [13] Li Shui-Qing, Wang Lai, Han Yan-Jun, Luo Yi, Deng He-Qing, Qiu Jian-Sheng, Zhang Jie. A new growth method of roughed p-GaN in GaN-based light emitting diodes. Acta Physica Sinica, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [14] Xing Yan-Hui, Han Jun, Deng Jun, Li Jian-Jun, Xu Chen, Shen Guang-Di. Improved properties of light emitting diode by rough p-GaN grown at lower temperature. Acta Physica Sinica, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [15] Li Su-Mei, Song Shu-Mei, Lü Ying-Bo, Wang Ai-Fang, Wu Ai-Ling, Zheng Wei-Min. Photoluminescence study of quantum confined acceptors. Acta Physica Sinica, 2009, 58(7): 4936-4940. doi: 10.7498/aps.58.4936
    [16] Li Bing-Qian, Zheng Tong-Chang, Xia Zheng-Hao. Temperature characteristics of the forward voltage of GaN based blue light emitting diodes. Acta Physica Sinica, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [17] Shen Guang-Di, Zhang Jian-Ming, Zou De-Shu, Xu Chen, Gu Xiao-Ling. Research on effects of current spreading and optimized contact scheme for high-power GaN-based light-emitting diodes. Acta Physica Sinica, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [18] Yu Wei, Li Ya-Chao, Ding Wen-Ge, Zhang Jiang-Yong, Yang Yan-Bin, Fu Guang-Sheng. Bonding configurations and photoluminescence of amorphous Si nanoparticles in SiNx films. Acta Physica Sinica, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [19] Zhang Xiao-Dong, Lin De-Xu, Li Gong-Ping, You Wei, Zhang Li-Min, Zhang Yu, Liu Zheng-Min. Broadband yellow luminescence in the photoluminescence spectra of n-GaN implanted by the different ions. Acta Physica Sinica, 2006, 55(10): 5487-5493. doi: 10.7498/aps.55.5487
    [20] Liu Nai-Xin, Wang Huai-Bing, Liu Jian-Ping, Niu Nan-Hui, Han Jun, Shen Guang-Di. Growth of p-GaN at low temperature and its properties as light emitting diodes. Acta Physica Sinica, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
Metrics
  • Abstract views:  7293
  • PDF Downloads:  258
  • Cited By: 0
Publishing process
  • Received Date:  14 February 2015
  • Accepted Date:  05 May 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map