搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响

毛清华 刘军林 全知觉 吴小明 张萌 江风益

引用本文:
Citation:

p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响

毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益

Influences of p-type layer structure and doping profile on the temperature dependence of the foward voltage characteristic of GaInN light-emitting diode

Mao Qing-Hua, Liu Jun-Lin, Quan Zhi-Jue, Wu Xiao-Ming, Zhang Meng, Jiang Feng-Yi
PDF
导出引用
  • 在温度变化时, 如果GaInN发光二极管能够保持相对稳定的工作电压对其实际应用具有重要意义. 本文通过金属有机化学气相沉积生长了一系列包含不同有源区结构、不同p型层结构以及不同掺杂浓度纵向分布的样品, 并对其在不同温度区间内正向电压随温度变化的斜率(dV/dT)进行了研究. 结果表明: 1)有源区中包括插入层设计、量子阱结构以及发光波长等因素的变化对正向电压随温度变化特性影响很小; 2)影响常温区间(300 K± 50 K)正向电压随温度变化斜率的最主要因素为p-AlGaN 电子阻挡层起始生长阶段的掺杂形貌, 具有p-AlGaN陡掺界面的样品电压变化斜率为-1.3 mV·K-1, 与理论极限值 -1.2 mV·K-1十分接近; 3) p-GaN主段层的掺Mg浓度对低温区间(V/dT斜率越大. 以上现象归因于在不同温度区间, p-AlGaN 以及p-GaN 发生Mg受主冻结效应的程度主要取决于各自的掺杂浓度. 因此Mg掺杂浓度纵向分布不同的样品在不同的温度区间具有不同的串联电阻, 最终表现为差异很大的正向电压温度特性.
    Many GaInN light-emitting diodes (LEDs) are subjected to a great temperature variation during their serving. In these applications, it is advantageous that GaInN LEDs have a weak temperature dependence of forward voltage. However, the factors determining the exact temperature dependence of the forward voltage characteristics are not fully understood. In this paper, two series of GaInN LEDs are prepared for investigating the correlation between the epitaxial structural and the temperature dependence of the forward voltage characteristics. The forward voltage characteristics of samples are studied in a temperature range from 100 K to 350 K. The curves of forward voltage versus temperature (dV/dT) are compared and analyzed. For the three samples in series I, according to the barrier thickness and emitting wavelength, they are designated as blue multiquantum well (MQW) with thin barrier (sample A), blue MQW with thick barrier (sample B), and green barrier with thick barrier (sample C) respectively. Their structures of active region including the insertion layer between n-GaN and MQW, the MQW, and the emitting wavelength are different from each other. However, the same slopes of dV/dT at room temperature (300 K± 50 K) are observed in the samples. Moreover, samples B and C with the same p-type layer design also have the same slopes of dV/dT at cryogenic temperatures. Sample A with a much thinner p-type layer shows a lower slope than samples B and C. Based on the these experimental data, it is deduced that the intrinsic physic properties of active region such as structure and emission wavelength have a little influence on the variation of the slope of dV/dT either at room temperature or at cryogenic temperatures. Moreover, the Mg concentration of the p-GaN main region determines the slope of dV/dT at cryogenic temperatures. Low doping concentration leads to a high slope of dV/dT.#br#In order to find the decisive factor determining the slope of dV/dT at room temperature, three samples in series II are grown. For sample E, at the MQW-EBL (electron blocking layer) interface, the Mg concentration increases very slowly while an abruptly varying doping profile is observed for samples D and F. The slopes of samples D and F are both -1.3 mV·K-1. This is very close to the calculation value of the lower bond for the change in forward voltage (-1.2 mV·K-1). Meanwhile, the slope of sample E is -2.5 mV·K-1, which is much higher than those of samples D and F. Thus, it is suggested that the major factor influencing the slope of dV/dT at room temperature is the Mg doping profile of the initial growth stage of the p-AlGaN electron blocking layer. These phenomena are mainly attributed to the changes of the activation energy of p-AlGaN and p-GaN, since it relies on the doping concentration and temperature. Our findings clarify the roles of active region, p-AlGaN and p-GaN in the temperature dependence of the forward voltage characteristic. More importantly, the results obtained in this study are helpful for optimizing the growth parameters to achieve LED devices with forward voltage that has a low sensitivity to temperature.
    • 基金项目: 国家自然科学基金(批准号: 61334001, 11364034, 21405076)、国家科技支撑计划(批准号: 2011BAE32B01)和国家高技术研究发展计划(批准号: 2011AA03A101)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61334001, 11364034, 21405076), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2011BAE32B01), and the National High Technology Research and Development Program of China (Grant No. 2011AA03A101).
    [1]

    Chen W C, Tang H L, Luo P, Ma W W, Xu X D, Qian X B, Jiang D P, Wu F, Wang J Y, Xu J 2014 Acta Phys. Sin. 63 068103 (in Chinese) [陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军 2014 63 068103]

    [2]

    Xie Z L, Zhang R, Fu D Y, Liu B, Xiu X Q, Hua X M, Zhao H, Chen P, Han P, Shi Y, Zheng Y D 2011 Chin. Phys. B 20 116801

    [3]

    Jiang R, Lu H, Chen D J, Ren F F, Yan D W, Zhang R, Zheng Y D 2013 Chin. Phys. B 22 047805

    [4]

    Xi Y, Schubert E F 2004 Appl. Phys. Lett. 85 2163

    [5]

    Keppens S, Ryckaert W R, Deconinck G, Hanselaer P 2008 J. Appl. Phys. 104 093104

    [6]

    Jiang F Y, Liu W H, Li Y Q, Fang W Q, Mo C L, Zhou M X, Liu H C 2007 J. Lumin. 122 693

    [7]

    Meyaard D S, Cho J, Schubert E F, Han S H, Kim M H, Sone C 2013 Appl. Phys. Lett. 103 121103

    [8]

    Mao Q H, Jiang F Y, Cheng H Y, Zheng C D 2010 Acta Phys. Sin. 59 8078 (in Chinese) [毛清华, 江风益, 程海英, 郑畅达 2010 59 8078]

    [9]

    Götz W, Johnson N M, Chen C, Liu H, Kuo C, Imler W 1996 Appl. Phys. Lett. 68 3144

    [10]

    Kozodoy P, Xing H L, Denbaars S P, Mishara U K 2000 J. Appl. Phys. 87 1832

    [11]

    Ohba Y, Hatano A 1994 J. Cryst. Growth 145 214

    [12]

    Suzuki M, Nishio J, Onomura M, Hongo C 1998 J. Cryst. Growth 189 511

    [13]

    Tanaka T, Watanabe A, Amano H, Kobayashi Y, Akasaki I, Yamazaki S, Koike M 1994 Appl. Phys. Lett. 65 593

  • [1]

    Chen W C, Tang H L, Luo P, Ma W W, Xu X D, Qian X B, Jiang D P, Wu F, Wang J Y, Xu J 2014 Acta Phys. Sin. 63 068103 (in Chinese) [陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军 2014 63 068103]

    [2]

    Xie Z L, Zhang R, Fu D Y, Liu B, Xiu X Q, Hua X M, Zhao H, Chen P, Han P, Shi Y, Zheng Y D 2011 Chin. Phys. B 20 116801

    [3]

    Jiang R, Lu H, Chen D J, Ren F F, Yan D W, Zhang R, Zheng Y D 2013 Chin. Phys. B 22 047805

    [4]

    Xi Y, Schubert E F 2004 Appl. Phys. Lett. 85 2163

    [5]

    Keppens S, Ryckaert W R, Deconinck G, Hanselaer P 2008 J. Appl. Phys. 104 093104

    [6]

    Jiang F Y, Liu W H, Li Y Q, Fang W Q, Mo C L, Zhou M X, Liu H C 2007 J. Lumin. 122 693

    [7]

    Meyaard D S, Cho J, Schubert E F, Han S H, Kim M H, Sone C 2013 Appl. Phys. Lett. 103 121103

    [8]

    Mao Q H, Jiang F Y, Cheng H Y, Zheng C D 2010 Acta Phys. Sin. 59 8078 (in Chinese) [毛清华, 江风益, 程海英, 郑畅达 2010 59 8078]

    [9]

    Götz W, Johnson N M, Chen C, Liu H, Kuo C, Imler W 1996 Appl. Phys. Lett. 68 3144

    [10]

    Kozodoy P, Xing H L, Denbaars S P, Mishara U K 2000 J. Appl. Phys. 87 1832

    [11]

    Ohba Y, Hatano A 1994 J. Cryst. Growth 145 214

    [12]

    Suzuki M, Nishio J, Onomura M, Hongo C 1998 J. Cryst. Growth 189 511

    [13]

    Tanaka T, Watanabe A, Amano H, Kobayashi Y, Akasaki I, Yamazaki S, Koike M 1994 Appl. Phys. Lett. 65 593

  • [1] 赵建铖, 吴朝兴, 郭太良. 无注入型发光二极管的载流子输运模型研究.  , 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [2] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用.  , 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [3] 王党会, 许天旱. 蓝紫光发光二极管中的低频产生-复合噪声行为研究.  , 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [4] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展.  , 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [5] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响.  , 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [6] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响.  , 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [7] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究.  , 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [8] 陈湛旭, 万巍, 何影记, 陈耿炎, 陈泳竹. 利用单层密排的纳米球提高发光二极管的出光效率.  , 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [9] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究.  , 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [10] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展.  , 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [11] 林圳旭, 林泽文, 张毅, 宋超, 郭艳青, 王祥, 黄新堂, 黄锐. 基于纳米硅结构的氮化硅基发光器件电致发光特性研究.  , 2014, 63(3): 037801. doi: 10.7498/aps.63.037801
    [12] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究.  , 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [13] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究.  , 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [14] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法.  , 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [15] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究.  , 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [16] 熊传兵, 江风益, 王 立, 方文卿, 莫春兰. 硅衬底垂直结构InGaAlN多量子阱发光二极管电致发光谱的干涉现象研究.  , 2008, 57(12): 7860-7864. doi: 10.7498/aps.57.7860
    [17] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究.  , 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [18] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征.  , 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [19] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究.  , 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] 侯林涛, 侯 琼, 彭俊彪, 曹 镛. 三元共聚物饱和红色电致发光研究.  , 2005, 54(11): 5377-5381. doi: 10.7498/aps.54.5377
计量
  • 文章访问数:  6387
  • PDF下载量:  664
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-13
  • 修回日期:  2014-12-24
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map