-
The design of a novel elliptically cylindrical transparent concentrator with functions of both electromagnetic transparency and electromagnetic concentration is put forward based on the form invariance of Maxwell’s equations in different coordinate transformation and transformation optics theory, and through the design of material constitutive parameters (permittivity and permeability) to guide the electromagnetic wave propagation. The electromagnetic wave transparent body does not prevent the transmission of electromagnetic waves that can interact in the cloak. An electromagnetic wave concentrator is an electromagnetic device that controls the electromagnetic waves to focus on an area or at a point to realize the electromagnetic wave energy concentration according to the requirement when the electromagnetic waves are incident on the device. In this paper, the expressions of the relative permittivity and permeability tensors in every layer of the electromagnetic device are derived by compression transformation and extension transformation. Then full-wave simulations for the electromagnetic device are performed by using finite-element software. The distributions of z-component of the magnetic field for the electromagnetic waves incident from different directions are obtained. Simulation results confirm the validity of the design method and the constitutive parameter tensors. Finally, effect of electromagnetic loss on the performance of the device is also discussed. To a certain extent, the function of the device will be weakened when the electromagnetic loss increases gradually. The design method proposed in this paper provides a new approach that can be used to design other novel electromagnetic devices.
[1] Pendry J B, Schuring D, Smith D R 2006 Science 312 1780
[2] Leonhardt U 2006 Science 312 1777
[3] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105
[4] Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photonic. Nanostruct. 6 87
[5] Yu G X, Cui T J, Jiang W 2009 J. Infrared Millim. TE. 30 633
[6] Luo Y, Chen H S, Zhang J J, Ran L X, Kong J A 2008 Phys. Rev. B 77 125127
[7] Chen H Y, Hou B, Chen S Y, Ao X Y, Wen W J, Chan C T 2009 Phys. Rev. Lett. 102 183903
[8] Kadic M, Guenneau S, Enoch S 2010 Opt. Express 18 12027
[9] Yang C F,Yang J J, Huang M, ShiJ H, Peng J H 2010 Radioengineering 19 136
[10] Mei Z L, Niu T M, Bai J, Cui T J 2010 J. Appl. Phys. 107 124908
[11] Mei Z L, Xu Y L, Bai J, Cui T J 2012 Opt Express 20 16955
[12] Li T H, Huang M, Yang J J, Xie R S, Yu J 2012 Int J. RF. Microw. C. E. 22 522
[13] Wang W, Lin L, Ma J X, Wang C T, Cui J H, Du C L, Luo X G 2008 Opt. Express 16 11431
[14] Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M, Liu R, Smith D R 2008 Appl. Phys. Lett. 92 264101
[15] Yaghjian A D, Maci S 2008 New J. Phys. 10 115022
[16] Yang J J, Huang M, Yang C F, Xiao Z, Peng J H 2009 Opt. Express 17 19656
[17] Yang C F, Yang J J, Huang M, Peng J H, Niu W W 2010 J. Opt. Soc. Am. A 27 1994
[18] Zhang K, Wu Q, Fu J H, Li L W 2011 J. Opt. Soc. Am. B 28 1573
[19] Wang S Y, Yu B, Liu S B, Bian B R 2013 J Opt Soc Am. A 30 1563
[20] Liu G C, Li C, Zhang C C, Sun Z Y, Fang G Y 2013 Phys. Rev. B 87 155125
[21] Chen Y, Zhu C, Huo F F, Li K, Li L, Kong L H, Liang C H 2014 Microw. Opt. Techn. Let. 56 1776
[22] Liu G C, Li C, Shao J J, Fang G Y 2014 Acta Phys. Sin. 63 154102 (in Chinese) [刘国昌, 李超, 邵金进, 方广有 2014 63 154102]
[23] Milton G, Briane M, Willis J 2006 New J. Phys. 8 248.
-
[1] Pendry J B, Schuring D, Smith D R 2006 Science 312 1780
[2] Leonhardt U 2006 Science 312 1777
[3] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105
[4] Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photonic. Nanostruct. 6 87
[5] Yu G X, Cui T J, Jiang W 2009 J. Infrared Millim. TE. 30 633
[6] Luo Y, Chen H S, Zhang J J, Ran L X, Kong J A 2008 Phys. Rev. B 77 125127
[7] Chen H Y, Hou B, Chen S Y, Ao X Y, Wen W J, Chan C T 2009 Phys. Rev. Lett. 102 183903
[8] Kadic M, Guenneau S, Enoch S 2010 Opt. Express 18 12027
[9] Yang C F,Yang J J, Huang M, ShiJ H, Peng J H 2010 Radioengineering 19 136
[10] Mei Z L, Niu T M, Bai J, Cui T J 2010 J. Appl. Phys. 107 124908
[11] Mei Z L, Xu Y L, Bai J, Cui T J 2012 Opt Express 20 16955
[12] Li T H, Huang M, Yang J J, Xie R S, Yu J 2012 Int J. RF. Microw. C. E. 22 522
[13] Wang W, Lin L, Ma J X, Wang C T, Cui J H, Du C L, Luo X G 2008 Opt. Express 16 11431
[14] Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M, Liu R, Smith D R 2008 Appl. Phys. Lett. 92 264101
[15] Yaghjian A D, Maci S 2008 New J. Phys. 10 115022
[16] Yang J J, Huang M, Yang C F, Xiao Z, Peng J H 2009 Opt. Express 17 19656
[17] Yang C F, Yang J J, Huang M, Peng J H, Niu W W 2010 J. Opt. Soc. Am. A 27 1994
[18] Zhang K, Wu Q, Fu J H, Li L W 2011 J. Opt. Soc. Am. B 28 1573
[19] Wang S Y, Yu B, Liu S B, Bian B R 2013 J Opt Soc Am. A 30 1563
[20] Liu G C, Li C, Zhang C C, Sun Z Y, Fang G Y 2013 Phys. Rev. B 87 155125
[21] Chen Y, Zhu C, Huo F F, Li K, Li L, Kong L H, Liang C H 2014 Microw. Opt. Techn. Let. 56 1776
[22] Liu G C, Li C, Shao J J, Fang G Y 2014 Acta Phys. Sin. 63 154102 (in Chinese) [刘国昌, 李超, 邵金进, 方广有 2014 63 154102]
[23] Milton G, Briane M, Willis J 2006 New J. Phys. 8 248.
Catalog
Metrics
- Abstract views: 5328
- PDF Downloads: 153
- Cited By: 0