-
A novel multi-functional electromagnetic (EM) device named rotary-concentrator is designed based on transformation optics theory. For its ability to manipulate the EM wave in a special manner, it can rotate the propagation direction of the EM field in the core region to a fixed angle, as well as concentrate the EM energy into the core region simultaneously. For the proposed three equivalent configurations of the rotary-concentrator, the corresponding constitutive parameter expressions are derived respectively, and the full-wave simulations using the finite element software are also carried out. The simulated results validate the derived constitutive parameter expressions. For the three different kinds of configurations, the first two kinds consist of three layers of media, and the last one is simplified to a two-layer configuration. For a given arbitrary rotating angle and an energy concentration ratio, the three configurations can perform propagation direction rotating and energy concentrating in equivalent effect. These results contribute to further understanding of the mechanism of rotator and concentrator, and provide a fuller theoretical basis for the design of multi-functional devices. The proposed rotary-concentrator has potential applications in the design of high efficient receiving antennas and special circuit package interconnecting devices.
-
Keywords:
- rotary-concentrator /
- transformation optics /
- constitutive parameter /
- full-wave simulation
[1] Pendry J B, Schuring D, Smith D R 2006 Science 312 1780
[2] [3] Leonhardt U 2006 Science 312 1777
[4] [5] [6] Schurig D, Mock J J, Justice B J, Cummer S A, Pender J B, Starr A F, Smith D R 2006 Science 314 977
[7] [8] Cai W, Chettiar U K 2007 Nat. Photon. 1 224
[9] [10] Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901
[11] [12] Tretyakov S, Alitalo P, Luukkonen O, Simovski C 2009 Phys. Rev. Lett. 103 103905
[13] [14] Smolyaninov I I, Smolyaninova V N, Kildishev A V, Shalaev V M 2009 Phys. Rev. Lett. 102 213901
[15] [16] Leonhardt U, Tyc T 2009 Science 323 110
[17] [18] Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366
[19] Valentine J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 8 568
[20] [21] [22] Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photon. 3 461
[23] [24] Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337
[25] Wu Q, Zhang K, Meng F Y, Li Y W 2010 Acta Phys. Sin. 9 6071 (in Chinese) [吴群, 张狂, 孟繁义, 李乐伟 2010 9 6071]
[26] [27] Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Acta Phys. Sin. 60 027801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍 2011 60 027801]
[28] [29] [30] Wang X H, Qu S B, Xia S, Wang B K, Xu Z, Ma H, Wang J F, Gu C, Wu X, Lu L, Zhou H 2010 Chin. Phys. B 19 064101
[31] [32] Guo P F, Li D, Dai Q, Fu Y Q 2013 Chin. Phys. B 22 054101
[33] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105
[34] [35] [36] Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photon. Nanostruct. Fundam. Appl. 6 87
[37] Yan M, Yan W, Qiu M 2008 Phys. Rev. B 78 125113
[38] [39] Lai Y, Chen H Y, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 093901
[40] [41] Zhang J J, Luo Y, Xi S, Chen H S, Ran L X, Wu B I, Kong J A 2008 PIER Letters 81 437
[42] [43] [44] Jiang W X, Cui T J, Ma H F, Zhou X Y, Cheng Q 2008 Appl. Phys. Lett. 92 261903
[45] [46] Cojocaru E 2011 PIER Letters 21 147
[47] Yu G X, Jiang W X, Zhou X Y, Cui T J 2008 Eur. Phys. J. Appl. Phys. 44 181
[48] [49] Yang C F, Yang J J, Huang M, Peng J H, Niu W W 2010 J. Opt. Soc. Am. A 27 1994
[50] [51] [52] Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M 2008 Appl. Phys. Lett. 92 264101
[53] [54] Zha i Y B, Ping X W, Jiang W X, Cui T J 2010 Commun. Comput. Phys. 8 823
[55] [56] Li T, Huang M, Yang J, Mu S, Mao F 2011 PIER M 18 119
[57] Wang W, Lin L. Ma J X, Wang C T, Cui J H, Du C L, Luo X G 2008 Optics Express 16 11431
[58] [59] [60] Zhang K, Wu Q, Fu J H, Li L W 2011 J. Opt. Soc. Am. B 28 1573
[61] [62] Li W, Guan J G, Wang W 2011 J. Phys. D:Appl. Phys. 44 125401
[63] [64] Luo Y, Chen H S, Zhang J J, Ran L X, Kong J A l 2008 Phys. Rev. B 77 125127
[65] [66] Farhat M, Guenneau S, Enoch S 2011 J. Comput. Physics 230 2237
[67] [68] Zang X F, Jiang C 2011 J. Opt. Soc. Am. B 28 1082
[69] [70] Dai L M, Liao C, Zhou H J, Huang W Y 2011 J. Microwaves 27 93 (in Chinese) [代黎明, 廖成, 周海京, 黄文媛 2011 微波学报 27 93]
[71] Chen H Y, Chan C T 2008 Phy. Rev. B 78 054204
[72] [73] Chen H Y, Hou B, Chen S Y 2009 Phys. Rev. Lett. 102 183903
[74] Wu Q N, Xu Y D, Chen H Y 2012 Front. Phys. 7 315
[75] Liu G C, Li C, Chen C, Lu Z, Fang G Y 2012 Appl. Phys. Lett. 101 224105
-
[1] Pendry J B, Schuring D, Smith D R 2006 Science 312 1780
[2] [3] Leonhardt U 2006 Science 312 1777
[4] [5] [6] Schurig D, Mock J J, Justice B J, Cummer S A, Pender J B, Starr A F, Smith D R 2006 Science 314 977
[7] [8] Cai W, Chettiar U K 2007 Nat. Photon. 1 224
[9] [10] Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901
[11] [12] Tretyakov S, Alitalo P, Luukkonen O, Simovski C 2009 Phys. Rev. Lett. 103 103905
[13] [14] Smolyaninov I I, Smolyaninova V N, Kildishev A V, Shalaev V M 2009 Phys. Rev. Lett. 102 213901
[15] [16] Leonhardt U, Tyc T 2009 Science 323 110
[17] [18] Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366
[19] Valentine J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 8 568
[20] [21] [22] Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photon. 3 461
[23] [24] Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337
[25] Wu Q, Zhang K, Meng F Y, Li Y W 2010 Acta Phys. Sin. 9 6071 (in Chinese) [吴群, 张狂, 孟繁义, 李乐伟 2010 9 6071]
[26] [27] Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Acta Phys. Sin. 60 027801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍 2011 60 027801]
[28] [29] [30] Wang X H, Qu S B, Xia S, Wang B K, Xu Z, Ma H, Wang J F, Gu C, Wu X, Lu L, Zhou H 2010 Chin. Phys. B 19 064101
[31] [32] Guo P F, Li D, Dai Q, Fu Y Q 2013 Chin. Phys. B 22 054101
[33] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105
[34] [35] [36] Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photon. Nanostruct. Fundam. Appl. 6 87
[37] Yan M, Yan W, Qiu M 2008 Phys. Rev. B 78 125113
[38] [39] Lai Y, Chen H Y, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 093901
[40] [41] Zhang J J, Luo Y, Xi S, Chen H S, Ran L X, Wu B I, Kong J A 2008 PIER Letters 81 437
[42] [43] [44] Jiang W X, Cui T J, Ma H F, Zhou X Y, Cheng Q 2008 Appl. Phys. Lett. 92 261903
[45] [46] Cojocaru E 2011 PIER Letters 21 147
[47] Yu G X, Jiang W X, Zhou X Y, Cui T J 2008 Eur. Phys. J. Appl. Phys. 44 181
[48] [49] Yang C F, Yang J J, Huang M, Peng J H, Niu W W 2010 J. Opt. Soc. Am. A 27 1994
[50] [51] [52] Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M 2008 Appl. Phys. Lett. 92 264101
[53] [54] Zha i Y B, Ping X W, Jiang W X, Cui T J 2010 Commun. Comput. Phys. 8 823
[55] [56] Li T, Huang M, Yang J, Mu S, Mao F 2011 PIER M 18 119
[57] Wang W, Lin L. Ma J X, Wang C T, Cui J H, Du C L, Luo X G 2008 Optics Express 16 11431
[58] [59] [60] Zhang K, Wu Q, Fu J H, Li L W 2011 J. Opt. Soc. Am. B 28 1573
[61] [62] Li W, Guan J G, Wang W 2011 J. Phys. D:Appl. Phys. 44 125401
[63] [64] Luo Y, Chen H S, Zhang J J, Ran L X, Kong J A l 2008 Phys. Rev. B 77 125127
[65] [66] Farhat M, Guenneau S, Enoch S 2011 J. Comput. Physics 230 2237
[67] [68] Zang X F, Jiang C 2011 J. Opt. Soc. Am. B 28 1082
[69] [70] Dai L M, Liao C, Zhou H J, Huang W Y 2011 J. Microwaves 27 93 (in Chinese) [代黎明, 廖成, 周海京, 黄文媛 2011 微波学报 27 93]
[71] Chen H Y, Chan C T 2008 Phy. Rev. B 78 054204
[72] [73] Chen H Y, Hou B, Chen S Y 2009 Phys. Rev. Lett. 102 183903
[74] Wu Q N, Xu Y D, Chen H Y 2012 Front. Phys. 7 315
[75] Liu G C, Li C, Chen C, Lu Z, Fang G Y 2012 Appl. Phys. Lett. 101 224105
Catalog
Metrics
- Abstract views: 5684
- PDF Downloads: 369
- Cited By: 0