Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and study of a multi-funtional electromagnetic device with functions of field rotating and concentrating

Liu Guo-Chang Li Chao Shao Jin-Jin Fang Guang-You

Citation:

Design and study of a multi-funtional electromagnetic device with functions of field rotating and concentrating

Liu Guo-Chang, Li Chao, Shao Jin-Jin, Fang Guang-You
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A novel multi-functional electromagnetic (EM) device named rotary-concentrator is designed based on transformation optics theory. For its ability to manipulate the EM wave in a special manner, it can rotate the propagation direction of the EM field in the core region to a fixed angle, as well as concentrate the EM energy into the core region simultaneously. For the proposed three equivalent configurations of the rotary-concentrator, the corresponding constitutive parameter expressions are derived respectively, and the full-wave simulations using the finite element software are also carried out. The simulated results validate the derived constitutive parameter expressions. For the three different kinds of configurations, the first two kinds consist of three layers of media, and the last one is simplified to a two-layer configuration. For a given arbitrary rotating angle and an energy concentration ratio, the three configurations can perform propagation direction rotating and energy concentrating in equivalent effect. These results contribute to further understanding of the mechanism of rotator and concentrator, and provide a fuller theoretical basis for the design of multi-functional devices. The proposed rotary-concentrator has potential applications in the design of high efficient receiving antennas and special circuit package interconnecting devices.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174280, 60990323, and 60990320), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. YYYJ-1123).
    [1]

    Pendry J B, Schuring D, Smith D R 2006 Science 312 1780

    [2]
    [3]

    Leonhardt U 2006 Science 312 1777

    [4]
    [5]
    [6]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pender J B, Starr A F, Smith D R 2006 Science 314 977

    [7]
    [8]

    Cai W, Chettiar U K 2007 Nat. Photon. 1 224

    [9]
    [10]

    Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901

    [11]
    [12]

    Tretyakov S, Alitalo P, Luukkonen O, Simovski C 2009 Phys. Rev. Lett. 103 103905

    [13]
    [14]

    Smolyaninov I I, Smolyaninova V N, Kildishev A V, Shalaev V M 2009 Phys. Rev. Lett. 102 213901

    [15]
    [16]

    Leonhardt U, Tyc T 2009 Science 323 110

    [17]
    [18]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366

    [19]

    Valentine J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 8 568

    [20]
    [21]
    [22]

    Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photon. 3 461

    [23]
    [24]

    Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337

    [25]

    Wu Q, Zhang K, Meng F Y, Li Y W 2010 Acta Phys. Sin. 9 6071 (in Chinese) [吴群, 张狂, 孟繁义, 李乐伟 2010 9 6071]

    [26]
    [27]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Acta Phys. Sin. 60 027801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍 2011 60 027801]

    [28]
    [29]
    [30]

    Wang X H, Qu S B, Xia S, Wang B K, Xu Z, Ma H, Wang J F, Gu C, Wu X, Lu L, Zhou H 2010 Chin. Phys. B 19 064101

    [31]
    [32]

    Guo P F, Li D, Dai Q, Fu Y Q 2013 Chin. Phys. B 22 054101

    [33]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105

    [34]
    [35]
    [36]

    Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photon. Nanostruct. Fundam. Appl. 6 87

    [37]

    Yan M, Yan W, Qiu M 2008 Phys. Rev. B 78 125113

    [38]
    [39]

    Lai Y, Chen H Y, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 093901

    [40]
    [41]

    Zhang J J, Luo Y, Xi S, Chen H S, Ran L X, Wu B I, Kong J A 2008 PIER Letters 81 437

    [42]
    [43]
    [44]

    Jiang W X, Cui T J, Ma H F, Zhou X Y, Cheng Q 2008 Appl. Phys. Lett. 92 261903

    [45]
    [46]

    Cojocaru E 2011 PIER Letters 21 147

    [47]

    Yu G X, Jiang W X, Zhou X Y, Cui T J 2008 Eur. Phys. J. Appl. Phys. 44 181

    [48]
    [49]

    Yang C F, Yang J J, Huang M, Peng J H, Niu W W 2010 J. Opt. Soc. Am. A 27 1994

    [50]
    [51]
    [52]

    Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M 2008 Appl. Phys. Lett. 92 264101

    [53]
    [54]

    Zha i Y B, Ping X W, Jiang W X, Cui T J 2010 Commun. Comput. Phys. 8 823

    [55]
    [56]

    Li T, Huang M, Yang J, Mu S, Mao F 2011 PIER M 18 119

    [57]

    Wang W, Lin L. Ma J X, Wang C T, Cui J H, Du C L, Luo X G 2008 Optics Express 16 11431

    [58]
    [59]
    [60]

    Zhang K, Wu Q, Fu J H, Li L W 2011 J. Opt. Soc. Am. B 28 1573

    [61]
    [62]

    Li W, Guan J G, Wang W 2011 J. Phys. D:Appl. Phys. 44 125401

    [63]
    [64]

    Luo Y, Chen H S, Zhang J J, Ran L X, Kong J A l 2008 Phys. Rev. B 77 125127

    [65]
    [66]

    Farhat M, Guenneau S, Enoch S 2011 J. Comput. Physics 230 2237

    [67]
    [68]

    Zang X F, Jiang C 2011 J. Opt. Soc. Am. B 28 1082

    [69]
    [70]

    Dai L M, Liao C, Zhou H J, Huang W Y 2011 J. Microwaves 27 93 (in Chinese) [代黎明, 廖成, 周海京, 黄文媛 2011 微波学报 27 93]

    [71]

    Chen H Y, Chan C T 2008 Phy. Rev. B 78 054204

    [72]
    [73]

    Chen H Y, Hou B, Chen S Y 2009 Phys. Rev. Lett. 102 183903

    [74]

    Wu Q N, Xu Y D, Chen H Y 2012 Front. Phys. 7 315

    [75]

    Liu G C, Li C, Chen C, Lu Z, Fang G Y 2012 Appl. Phys. Lett. 101 224105

  • [1]

    Pendry J B, Schuring D, Smith D R 2006 Science 312 1780

    [2]
    [3]

    Leonhardt U 2006 Science 312 1777

    [4]
    [5]
    [6]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pender J B, Starr A F, Smith D R 2006 Science 314 977

    [7]
    [8]

    Cai W, Chettiar U K 2007 Nat. Photon. 1 224

    [9]
    [10]

    Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901

    [11]
    [12]

    Tretyakov S, Alitalo P, Luukkonen O, Simovski C 2009 Phys. Rev. Lett. 103 103905

    [13]
    [14]

    Smolyaninov I I, Smolyaninova V N, Kildishev A V, Shalaev V M 2009 Phys. Rev. Lett. 102 213901

    [15]
    [16]

    Leonhardt U, Tyc T 2009 Science 323 110

    [17]
    [18]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366

    [19]

    Valentine J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 8 568

    [20]
    [21]
    [22]

    Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photon. 3 461

    [23]
    [24]

    Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337

    [25]

    Wu Q, Zhang K, Meng F Y, Li Y W 2010 Acta Phys. Sin. 9 6071 (in Chinese) [吴群, 张狂, 孟繁义, 李乐伟 2010 9 6071]

    [26]
    [27]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Acta Phys. Sin. 60 027801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍 2011 60 027801]

    [28]
    [29]
    [30]

    Wang X H, Qu S B, Xia S, Wang B K, Xu Z, Ma H, Wang J F, Gu C, Wu X, Lu L, Zhou H 2010 Chin. Phys. B 19 064101

    [31]
    [32]

    Guo P F, Li D, Dai Q, Fu Y Q 2013 Chin. Phys. B 22 054101

    [33]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105

    [34]
    [35]
    [36]

    Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photon. Nanostruct. Fundam. Appl. 6 87

    [37]

    Yan M, Yan W, Qiu M 2008 Phys. Rev. B 78 125113

    [38]
    [39]

    Lai Y, Chen H Y, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 093901

    [40]
    [41]

    Zhang J J, Luo Y, Xi S, Chen H S, Ran L X, Wu B I, Kong J A 2008 PIER Letters 81 437

    [42]
    [43]
    [44]

    Jiang W X, Cui T J, Ma H F, Zhou X Y, Cheng Q 2008 Appl. Phys. Lett. 92 261903

    [45]
    [46]

    Cojocaru E 2011 PIER Letters 21 147

    [47]

    Yu G X, Jiang W X, Zhou X Y, Cui T J 2008 Eur. Phys. J. Appl. Phys. 44 181

    [48]
    [49]

    Yang C F, Yang J J, Huang M, Peng J H, Niu W W 2010 J. Opt. Soc. Am. A 27 1994

    [50]
    [51]
    [52]

    Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M 2008 Appl. Phys. Lett. 92 264101

    [53]
    [54]

    Zha i Y B, Ping X W, Jiang W X, Cui T J 2010 Commun. Comput. Phys. 8 823

    [55]
    [56]

    Li T, Huang M, Yang J, Mu S, Mao F 2011 PIER M 18 119

    [57]

    Wang W, Lin L. Ma J X, Wang C T, Cui J H, Du C L, Luo X G 2008 Optics Express 16 11431

    [58]
    [59]
    [60]

    Zhang K, Wu Q, Fu J H, Li L W 2011 J. Opt. Soc. Am. B 28 1573

    [61]
    [62]

    Li W, Guan J G, Wang W 2011 J. Phys. D:Appl. Phys. 44 125401

    [63]
    [64]

    Luo Y, Chen H S, Zhang J J, Ran L X, Kong J A l 2008 Phys. Rev. B 77 125127

    [65]
    [66]

    Farhat M, Guenneau S, Enoch S 2011 J. Comput. Physics 230 2237

    [67]
    [68]

    Zang X F, Jiang C 2011 J. Opt. Soc. Am. B 28 1082

    [69]
    [70]

    Dai L M, Liao C, Zhou H J, Huang W Y 2011 J. Microwaves 27 93 (in Chinese) [代黎明, 廖成, 周海京, 黄文媛 2011 微波学报 27 93]

    [71]

    Chen H Y, Chan C T 2008 Phy. Rev. B 78 054204

    [72]
    [73]

    Chen H Y, Hou B, Chen S Y 2009 Phys. Rev. Lett. 102 183903

    [74]

    Wu Q N, Xu Y D, Chen H Y 2012 Front. Phys. 7 315

    [75]

    Liu G C, Li C, Chen C, Lu Z, Fang G Y 2012 Appl. Phys. Lett. 101 224105

  • [1] Liu Hui-Gang, Zhang Xiang-Yu, Nan Xue-Ying, Zhao Er-Gang, Liu Hai-Tao. All-dielectric metasurface two-parameter sensor based on quasi-bound states in continuum. Acta Physica Sinica, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [2] Lang Li-Ying, Lu Jia-Lei, Yu Na-Na, Xi Si-Xing, Wang Xue-Guang, Zhang Lei, Jiao Xiao-Xue. In depth learning based method of denoising joint transform correlator optical image encryption system. Acta Physica Sinica, 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [3] Liu Jun-Qun, Liu Yao-Wen. Conversion relationships between several parameter groups of completely polarized electromagnetic waves. Acta Physica Sinica, 2017, 66(5): 054101. doi: 10.7498/aps.66.054101
    [4] Xu Fu, Li Ke-Feng, Deng Xu-Hui, Zhang Ping, Long Zhi-Lin. Research on viscoelastic behavior and rheological constitutive parameters of metallic glasses based on fractional-differential rheological model. Acta Physica Sinica, 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [5] Yan Bai-Ping, Zhang Cheng-Ming, Li Li-Yi, Tang Zhi-Feng, Lü Fu-Zai, Yang Ke-Ji. Method of identifying consitutive parameter in Tb0.3Dy0.7Fe2 Alloy. Acta Physica Sinica, 2015, 64(2): 027501. doi: 10.7498/aps.64.027501
    [6] Wang Hui-Bo, Luo Xiao-Yang, Dong Jian-Feng. Design and study of the elliptically cylindrical transparent concentrator based on transformation optics. Acta Physica Sinica, 2015, 64(15): 154102. doi: 10.7498/aps.64.154102
    [7] Zhao Xian-Bin, Yan Wei, Wang Ying-Qiang, Lu Wen, Ma Shuo. Simulation study on the design of key technical parameters in marine environment sounding with fully polarimetric synthetic aperture radar based on ocean surface scattering model. Acta Physica Sinica, 2014, 63(21): 218401. doi: 10.7498/aps.63.218401
    [8] Hu Hai-Fan, Wang Ying, Chen Jie, Zhao Shi-Bin. Full three-dimensional simulations of optimized active pixel detector for ionizing particle detection. Acta Physica Sinica, 2014, 63(10): 100702. doi: 10.7498/aps.63.100702
    [9] Mao Fu-Chun, Li Ting-Hua, Huang Ming, Yang Jing-Jing, Jia Bang-Jie. Cylindrical thermal concentrator:theory, simulation, and implement. Acta Physica Sinica, 2014, 63(17): 170507. doi: 10.7498/aps.63.170507
    [10] Li Ting-Hua, Mao Fu-Chun, Huang Ming, Yang Jing-Jing, Chen Jun-Chang. Research and design of thermal concentrator with arbitrary shape based on transformation thermodynamics. Acta Physica Sinica, 2014, 63(5): 054401. doi: 10.7498/aps.63.054401
    [11] Luo Xiao-Yang, Liu Dao-Ya, Yao Li-Fang, Dong Jian-Feng. Design of a novel elliptical complementary invisible cloak. Acta Physica Sinica, 2014, 63(8): 084101. doi: 10.7498/aps.63.084101
    [12] Xu Xin-He, Xiao Shao-Qiu, Gan Yue-Hong, Wang Bing-Zhong. Theoretical analysis of constitutive parameters for the periodic magnetic resonator metamaterials. Acta Physica Sinica, 2013, 62(10): 104105. doi: 10.7498/aps.62.104105
    [13] Wang Zhan, Luo Xiao-Yang, Liu Jin-Jing, Dong Jian-Feng. Design and study of the two-dimensional ellptical scattering-shifting cloak. Acta Physica Sinica, 2013, 62(2): 024101. doi: 10.7498/aps.62.024101
    [14] Gong Jian-Qiang, Liang Chang-Hong. Extraction algorithm for retrieving the effective constitutive parameters of metamaterials based on TE10 rectangular waveguide. Acta Physica Sinica, 2011, 60(5): 059204. doi: 10.7498/aps.60.059204
    [15] Liu Jia, Xu Zhuo, Qu Shao-Bo, Gu Chao, Pei Zhi-Bin, Gu Wei. Deduction and verification of electromagnetic parameter of arbitrary polyhedron cloaks. Acta Physica Sinica, 2011, 60(2): 027801. doi: 10.7498/aps.60.027801
    [16] Li Li, Zhang Xin-Lu, Cui Jin-Hui, Chen Li-Xue. Characteristics of intrinsic optical bistability and parameter optimization in Tm3+/Yb3+ codoped laser crystal. Acta Physica Sinica, 2010, 59(2): 1052-1062. doi: 10.7498/aps.59.1052
    [17] Cheng Wei-Bin, Guo Ying-Na, Kang Si-Min, Wang Yue-Long, Huo Ai-Qing, Tang Nan. Study on control power in Boost converter with parameter ramp resonance. Acta Physica Sinica, 2009, 58(7): 4439-4448. doi: 10.7498/aps.58.4439
    [18] Hua Jing-Song, Jing Fu-Qian, Dong Yu-Bin, Tan Hua, Shen Zhong-Yi, Zhou Xian-Ming, Hu Shao-Lou. Constitutive study for tungsten alloy under high pressure. Acta Physica Sinica, 2003, 52(8): 2005-2009. doi: 10.7498/aps.52.2005
    [19] Zhang Rui-Feng, Ge Chun-Feng, Wang Shu-Hui, Hu Zhi-Yong, Li Shi-Chen. Fused biconical taper all-wave coupler. Acta Physica Sinica, 2003, 52(2): 390-394. doi: 10.7498/aps.52.390
    [20] CHEN YAN-SONG, ZHENG SHI-HAI, LI DE-HUA. STUDY ON OPTICAL TRANSFORMATION IN HIGH SEQUENCE. Acta Physica Sinica, 1988, 37(2): 261-267. doi: 10.7498/aps.37.261
Metrics
  • Abstract views:  5684
  • PDF Downloads:  369
  • Cited By: 0
Publishing process
  • Received Date:  13 January 2014
  • Accepted Date:  19 March 2014
  • Published Online:  05 August 2014

/

返回文章
返回
Baidu
map