搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控

唐宏 王登龙 张蔚曦 丁建文 肖思国

引用本文:
Citation:

纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控

唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国

Controlling of dark or bright soliton type in a cascade-type electromagnetically induced transparency semiconductor quantum well by the coupling longitudinal optical phonons

Tang Hong, Wang Deng-Long, Zhang Wei-Xi, Ding Jian-Wen, Xiao Si-Guo
PDF
导出引用
  • 利用多重尺度法,解析地研究了计及纵波光学声子耦合弛豫效应下级联型三能级电磁诱导透明半导体量子阱介质中时间光孤子的动力学特征.结果表明:纵波光学声子耦合强度的大小能有效调控体系时间光孤子的类型;发现孤子的群速度也可通过纵波光学声子耦合强度和控制光来调控.这为实验上如何操控半导体量子阱的孤子动力学提供了一定的理论依据.
    In the past few years, with developing the technology of electromagnetically induced transparency (EIT) and improving the semiconductor technology, it has become possible to realize the application of optical soliton to communication device. Studies show the reduction of group velocity of the optical soliton in EIT medium under weak driving condition, which possibly realizes the storing of optical pulses in information storage. More importantly, semiconductor quantum wells have the inherent advantages such as large electric dipole moments of the transitions, high nonlinear optical coefficients, small size, easily operating and integrating. So it is considered to be the most potential EIT medium to realize the application of quantum devices. The optical soliton behavior in the semiconductor quantum well is studied, which can provide a certain reference value for the practical application of information transmission and processing together quantum devices. Although there has been a series of researches on both linear and nonlinear optical properties in semiconductor quantum wells structures, few publications report the effects of the cross-coupling longitude-optical phonon (CCLOP) relaxation on its linear and nonlinear optical properties. However, to our knowledge, the electron-longitude-optical phonon scattering rate can be realized experimentally by varying the sub-picosecond range to the order of a picosecond. According to this, we in the paper study the effects of the CCLOP relaxation on its linear and nonlinear optical properties in a cascade-type three-level EIT semiconductor quantum well. According to the current experimental conditions, we first propose a cascade-type three-level EIT semiconductor quantum well model. And in this model we consider the longitudinal optical phonons coupling between the bond state and anti-bond state. Subsequently, by using the multiple-scale method, we analytically study the dynamical properties of solitons in the cascade-type three-level EIT semiconductor quantum well with the CCRLOP. It is shown that when the CCRLOP strength is smaller, there exhibits the dark soliton in the EIT semiconductor quantum well. Only if the strength of the CCRLOP is larger, will in the system there exists bright soliton. That is to say, with increasing the strength of the CCRLOP, the soliton type of the system is converted from dark to bright soliton little by little. So, the temporal soliton type can be effectively controlled by the strength of the CCRLOP. In addition, we also find that the group velocity of the soliton can also be controlled by the strength of CCRLOP and the control light. These results may provide a theoretical basis for manipulating experimentally the dynamics of soliton in semiconductor quantum wells.
      通信作者: 王登龙, dlwang@xtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11474245,11374252,51372214)和贵州省教育厅自然科学研究项目(批准号:KY(2015)384,KY(2015)446)资助的课题.
      Corresponding author: Wang Deng-Long, dlwang@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474245, 11374252, 51372214) and the Scientific Research Fund of Guizhou Provincial Education Department, China (Grant Nos. KY(2015)384, KY(2015)446).
    [1]

    Harris S E 1997 Phys. Today 50 36

    [2]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [3]

    Kang H, Zhu Y 2003 Phys. Rev. Lett. 91 093601

    [4]

    Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Phys. Rev. Lett. 102 053901

    [5]

    Wang B, Li S J, Chang H, Wu H B, Xie C D, Wang H 2005 Acta Phys. Sin. 54 4136 (in Chinese)[王波, 李淑静, 常宏, 武海斌, 谢常德, 王海2005 54 4136]

    [6]

    Kasapi A, Jain M, Yin G Y 1995 Phys. Rev. Lett. 74 2447

    [7]

    Xiao M, Li Y, Jin S, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666

    [8]

    Schmidt O, Wynands R, Hussein Z, Meschede D 1996 Phys. Rev. A 53 R27

    [9]

    Hau L V, Harris S E, Zachary D, Cyrus H B 1999 Nature 397 594

    [10]

    Wu Y, Wen L, Zhu Y 2003 Opt. Lett. 28 631

    [11]

    Chen Y, Bai Z, Huang G 2014 Phys. Rev. A 89 023835

    [12]

    Huang G, Deng L, Payne M G 2005 Phys. Rev. E 72 016617

    [13]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904

    [14]

    Wu H B, Chang H, Ma J, Xie C D, Wang H 2005 Acta Phys. Sin. 54 3632 (in Chinese)[武海斌, 常宏, 马杰, 谢常德, 王海2005 54 3632]

    [15]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490

    [16]

    Yang W X, Hou J M, Lin Y, Lee R K 2009 Phys. Rev. A 79 033825

    [17]

    Paspalakis E, Tsaousidou M, Terzis A F 2006 Phys. Rev. B 73 125344

    [18]

    Li J H 2007 Phys. Rev. B 75 155329

    [19]

    Wu J H, Gao J Y, Xu J H, Silvestri L, Artoni M, La Rocca G C, Bassani F 2005 Phys. Rev. Lett. 95 057401

    [20]

    Asano T, Noda S, Abe T, Sasaki A 1996 Jpn. J. Appl. Phys 35 1285

    [21]

    Yang W X, Lee R K 2008 Opt. Express 16 17161

    [22]

    Neogi A, Yoshida H, Mozume T, Wada O 1999 Opt. Commun. 159 225

    [23]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803

    [24]

    Tang H, Wang D L, She Y C, Ding J W, Xiao S G 2016 Eur. Phys. J. D 70 22

    [25]

    Huang J L, Xu J Z, Xiong Y T 2004 Soliton Conceptions, Theory and Application (1st Ed.) (Beijing:Higher Education Press) p96(in Chinese)[黄景宁, 徐济仲, 熊吟涛2004孤子概念、原理和应用(第1版) (北京:高等教育出版社)第96页]

    [26]

    Yang W X, Hou J M, Lee R K 2008 Phys. Rev. A 77 033838

    [27]

    She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392

    [28]

    Dynes J F, Frogley M D, Beck M, Faist J, Phillips C C 2005 Phys. Rev. Lett. 94 157403

    [29]

    She Y C, Wang D L, Zhang W X, He Z M, Ding J W 2010 J. Opt. Soc. Am. B 27 208

    [30]

    Hang C, Li Y, Ma L, Huang G X 2006 Phys. Rev. A 74 012319

    [31]

    Zhu C J, Huang G X 2009 Phys. Rev. B 80 235408

    [32]

    Zhang B, Wang D L, She Y C, Zhang W X 2013 Acta Phys. Sin. 62 110501 (in Chinese)[张波, 王登龙, 佘彦超, 张蔚曦2013 62 110501]

    [33]

    Roskos H G, Nuss M C, Shah J, Leo K, Miller D A B, Fox A M, Schmitt-Rink S, Köhler K 1992 Phys. Rev. Lett. 68 2216

  • [1]

    Harris S E 1997 Phys. Today 50 36

    [2]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [3]

    Kang H, Zhu Y 2003 Phys. Rev. Lett. 91 093601

    [4]

    Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Phys. Rev. Lett. 102 053901

    [5]

    Wang B, Li S J, Chang H, Wu H B, Xie C D, Wang H 2005 Acta Phys. Sin. 54 4136 (in Chinese)[王波, 李淑静, 常宏, 武海斌, 谢常德, 王海2005 54 4136]

    [6]

    Kasapi A, Jain M, Yin G Y 1995 Phys. Rev. Lett. 74 2447

    [7]

    Xiao M, Li Y, Jin S, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666

    [8]

    Schmidt O, Wynands R, Hussein Z, Meschede D 1996 Phys. Rev. A 53 R27

    [9]

    Hau L V, Harris S E, Zachary D, Cyrus H B 1999 Nature 397 594

    [10]

    Wu Y, Wen L, Zhu Y 2003 Opt. Lett. 28 631

    [11]

    Chen Y, Bai Z, Huang G 2014 Phys. Rev. A 89 023835

    [12]

    Huang G, Deng L, Payne M G 2005 Phys. Rev. E 72 016617

    [13]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904

    [14]

    Wu H B, Chang H, Ma J, Xie C D, Wang H 2005 Acta Phys. Sin. 54 3632 (in Chinese)[武海斌, 常宏, 马杰, 谢常德, 王海2005 54 3632]

    [15]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490

    [16]

    Yang W X, Hou J M, Lin Y, Lee R K 2009 Phys. Rev. A 79 033825

    [17]

    Paspalakis E, Tsaousidou M, Terzis A F 2006 Phys. Rev. B 73 125344

    [18]

    Li J H 2007 Phys. Rev. B 75 155329

    [19]

    Wu J H, Gao J Y, Xu J H, Silvestri L, Artoni M, La Rocca G C, Bassani F 2005 Phys. Rev. Lett. 95 057401

    [20]

    Asano T, Noda S, Abe T, Sasaki A 1996 Jpn. J. Appl. Phys 35 1285

    [21]

    Yang W X, Lee R K 2008 Opt. Express 16 17161

    [22]

    Neogi A, Yoshida H, Mozume T, Wada O 1999 Opt. Commun. 159 225

    [23]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803

    [24]

    Tang H, Wang D L, She Y C, Ding J W, Xiao S G 2016 Eur. Phys. J. D 70 22

    [25]

    Huang J L, Xu J Z, Xiong Y T 2004 Soliton Conceptions, Theory and Application (1st Ed.) (Beijing:Higher Education Press) p96(in Chinese)[黄景宁, 徐济仲, 熊吟涛2004孤子概念、原理和应用(第1版) (北京:高等教育出版社)第96页]

    [26]

    Yang W X, Hou J M, Lee R K 2008 Phys. Rev. A 77 033838

    [27]

    She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392

    [28]

    Dynes J F, Frogley M D, Beck M, Faist J, Phillips C C 2005 Phys. Rev. Lett. 94 157403

    [29]

    She Y C, Wang D L, Zhang W X, He Z M, Ding J W 2010 J. Opt. Soc. Am. B 27 208

    [30]

    Hang C, Li Y, Ma L, Huang G X 2006 Phys. Rev. A 74 012319

    [31]

    Zhu C J, Huang G X 2009 Phys. Rev. B 80 235408

    [32]

    Zhang B, Wang D L, She Y C, Zhang W X 2013 Acta Phys. Sin. 62 110501 (in Chinese)[张波, 王登龙, 佘彦超, 张蔚曦2013 62 110501]

    [33]

    Roskos H G, Nuss M C, Shah J, Leo K, Miller D A B, Fox A M, Schmitt-Rink S, Köhler K 1992 Phys. Rev. Lett. 68 2216

  • [1] 谭聪, 王登龙, 董耀勇, 丁建文. V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取.  , 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [2] 盖云冉, 郑康, 丁春玲, 郝向英, 金锐博. 基于半导体量子阱中四波混频效应的高效光学非互易.  , 2024, 73(1): 014201. doi: 10.7498/aps.73.20231212
    [3] 王胤, 周驷杰, 陈桥, 邓永和. 能级构型对InAs/GaAs量子点电磁感应透明介质中光孤子存储的影响.  , 2023, 72(8): 084204. doi: 10.7498/aps.72.20221965
    [4] 高海燕, 杨欣达, 周波, 贺青, 韦联福. 耦合诱导的四分之一波长超导谐振器微波传输透明.  , 2022, 71(6): 064202. doi: 10.7498/aps.71.20211758
    [5] 张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明. 基于非对称结构全介质超材料的类电磁诱导透明效应研究.  , 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [6] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速.  , 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [7] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性.  , 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [8] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计.  , 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [9] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性.  , 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [10] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数.  , 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [11] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究.  , 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [12] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子.  , 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [13] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究.  , 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [14] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现.  , 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [15] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明.  , 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [16] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收.  , 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [17] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收.  , 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [18] 王 丽, 宋海珍. 四能级原子系统中的电磁诱导吸收.  , 2006, 55(8): 4145-4149. doi: 10.7498/aps.55.4145
    [19] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究.  , 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [20] 孙丰伟, 邓 莉, 寿 倩, 刘鲁宁, 文锦辉, 赖天树, 林位株. 量子阱中电子自旋注入及弛豫的飞秒光谱研究.  , 2004, 53(9): 3196-3199. doi: 10.7498/aps.53.3196
计量
  • 文章访问数:  6120
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-19
  • 修回日期:  2016-10-03
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map