Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of electromagnetically induced transparency based on quantum memory of squeezed state of light

Deng Rui-Jie Yan Zhi-Hui Jia Xiao-Jun

Citation:

Analysis of electromagnetically induced transparency based on quantum memory of squeezed state of light

Deng Rui-Jie, Yan Zhi-Hui, Jia Xiao-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum memory of light is not only the building block of constructing large-scale quantum computer, but also the kernel component of quantum repeater for quantum networks, which makes long distance quantum communication come true. Due to the inevitable optical losses, squeezed vacuum generated from optical parametric amplifier becomes squeezed thermal state of light, which is no longer the minimum uncertainty state. Therefore quantum memory of squeezed thermal state of optical field is the key step towards the implementation of quantum internet. Atomic ensemble is one of ideal quantum memory media, as a result of high optical depth and good atomic coherence. Electromagnetically induced transparency (EIT) is one of mature approaches to quantum state mapping between non-classical optical fields and atomic spin waves. In atomic ensembles, the EIT can on-demand map quantum state between quadratures of light and spin waves of atomic ensemble, i.e., controlled quantum memory. Here the condition of quantum memory for squeezed thermal state of light is investigated according to the fidelity benchmark of quantum memory. The fidelity benchmark of quantum memory is the maximum fidelity which can be reached by classical methods, and it is quantum memory if the memory fidelity is higher than the fidelity benchmark of quantum memory. By numerically calculating the fidelity benchmark of quantum memory for different kinds of squeezed thermal states of light and the dependence of memory fidelity on the memory efficiency, we obtain the minimum memory efficiency which can realize quantum memory for squeezed thermal state of light. The quantum memory can be easily obtained by increasing squeezing parameter r. The thermal state fluctuation is sensitive to the realization of quantum memory. The required minimum memory efficiency is lower, when smaller thermal state fluctuation is employed in experiment by reducing the optical losses in optical parametric amplifier. On the other hand, quantum memory fidelity benchmark is high for small squeezing parameter and large optical depth, which requires high memory efficiency. And atomic memory efficiency can be increased by utilizing optical cavity to enhance the interaction between light and atom or atomic ensemble with high optical depth. For example, the fidelity benchmark is 0.80, when squeezing parameter r is 0.35 and thermal state fluctuation is 2.38 dB. Thus quantum memory can be realized if the memory efficiency is larger than 4.34%. Our work can provide the direct reference for experimental design of continuous variable quantum memory, quantum repeater, and quantum computer based on atomic ensembles.
      Corresponding author: Yan Zhi-Hui, zhyan@sxu.edu.cn
    • Funds: Project supported by Key Project of the Ministry of Science and Technology of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 11322440, 11474190, 11304190), FOK Ying-dong Education Foundation, China, Natural Science Foundation of Shanxi Province, China (Grant No. 2014021001), Program for Sanjin Scholars of Shanxi Province, China, and Shanxi Scholarship Council of China.
    [1]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84777

    [2]

    Braunstein S L, Loock P 2005 Rev. Mod. Phys. 77513

    [3]

    Wu LA, Kimble H J, Hall J L, Wu H F 1986Phys. Rev. Lett. 57 2520

    [4]

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64234210(in Chinese)[孙恒信, 刘奎, 张俊香, 郜江瑞2015 64234210]

    [5]

    The LIGO Scientific Collaboration 2013 Nature Photon. 7613

    [6]

    Marino A M, Stroud C R 2006Phys. Rev. A 74 022315

    [7]

    Aoki T, Takei N, Yonezawa H, Wakui K, Hiraoka T, Furusawa A 2003Phys. Rev. Lett. 91 080404

    [8]

    Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012Opt. Lett. 37 5178

    [9]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nature Commun. 42828

    [10]

    Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282706

    [11]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 1925763

    [12]

    Wu Z Q, Zhou H J, Wang Y J, Zheng Y H 2013 Acta Sin. Quantum Opt. 191(in Chinese)[邬志强, 周海军, 王雅君, 郑耀辉2013量子光学学报191]

    [13]

    Sun Z N, Feng J X, Wan Z J, Zhang K S 2016 Acta Phys. Sin. 65044203(in Chinese)[孙志妮, 冯晋霞, 万振菊, 张宽收2016 65044203]

    [14]

    Kimble H J 2008Nature 453 1023

    [15]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414413

    [16]

    Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 242350

    [17]

    Fleischhauer M, Lukin M D 2000Phys. Rev. Lett. 84 5094

    [18]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001Phys. Rev. Lett. 86 783

    [19]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409490

    [20]

    Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, Walmsley I A 2010 Nature Photon. 4218

    [21]

    Meng X D, Tian L, Zhang Z Y, Yan Z H, Li S J, Wang H 2012 Acta Sin. Quantum Opt. 18357(in Chinese)[孟祥栋, 田龙, 张志英, 闫智辉, 李淑静, 王海2012量子光学学报18357]

    [22]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nature Photon. 9332

    [23]

    Yan Y, Li S J, Tian L, Wang H 2016Acta Phys. Sin. 65 014205 (in Chinese)[闫妍, 李淑静, 田龙, 王海2016 65 014205]

    [24]

    Julsgaard B, Sherson J, Cirac J I, Fiurasek J, Polzik E S 2004Nature 432 482

    [25]

    Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nature Commun. 2174

    [26]

    Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473190

    [27]

    Langer C, Ozeri R, Jost J D, Chiaverini J, DeMarco B, Ben-Kish A, Blakestad R B, Britton J, Hume D B, Itano W M, Leibfried D, Reichle R, Rosenband T, Schaetz T, Schmidt P O, Wineland D J 2005Phys. Rev. Lett. 95 060502

    [28]

    Hedges M P, Longdell J J, Li Y M, Sellars M J 2010Nature 465 1052

    [29]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015Phys. Rev. Lett. 114 090503

    [30]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008Phys. Rev. Lett. 100 093602

    [31]

    Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008Phys. Rev. Lett. 100 093601

    [32]

    Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio M B, Serafini A, Wolf M M, Polzik E S 2011 Nature Phys. 7 13

    [33]

    Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802

    [34]

    Zhang J X, Xie C D, Peng K C 2005Chin. Phys. Lett. 22 3005

    [35]

    Takei N, Aoki T, Koike S, Yoshino K, Wakui K, Yonezawa H, Hiraoka T, Mizuno J, Takeika M, Ban M, Furusawa A 2005Phys. Rev. A 72 042304

    [36]

    Hammerer K, Wolf M M, Polzik E S, Cirac J I 2005Phys. Rev. Lett. 94 150503

    [37]

    Owari M, Plenio M B, Polzik E S, Serafini A, Wolf M M 2008New. J. Phys. 10 113014

    [38]

    Adesso G, Chiribella G 2008Phys. Rev. Lett. 100 170503

    [39]

    Ou Z Y 2008Phys. Rev. A 78 023819

    [40]

    Scutaru H 1998J. Phys. A 31 3659

    [41]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2010New J. Phys. 12 093032

  • [1]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84777

    [2]

    Braunstein S L, Loock P 2005 Rev. Mod. Phys. 77513

    [3]

    Wu LA, Kimble H J, Hall J L, Wu H F 1986Phys. Rev. Lett. 57 2520

    [4]

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64234210(in Chinese)[孙恒信, 刘奎, 张俊香, 郜江瑞2015 64234210]

    [5]

    The LIGO Scientific Collaboration 2013 Nature Photon. 7613

    [6]

    Marino A M, Stroud C R 2006Phys. Rev. A 74 022315

    [7]

    Aoki T, Takei N, Yonezawa H, Wakui K, Hiraoka T, Furusawa A 2003Phys. Rev. Lett. 91 080404

    [8]

    Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012Opt. Lett. 37 5178

    [9]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nature Commun. 42828

    [10]

    Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282706

    [11]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 1925763

    [12]

    Wu Z Q, Zhou H J, Wang Y J, Zheng Y H 2013 Acta Sin. Quantum Opt. 191(in Chinese)[邬志强, 周海军, 王雅君, 郑耀辉2013量子光学学报191]

    [13]

    Sun Z N, Feng J X, Wan Z J, Zhang K S 2016 Acta Phys. Sin. 65044203(in Chinese)[孙志妮, 冯晋霞, 万振菊, 张宽收2016 65044203]

    [14]

    Kimble H J 2008Nature 453 1023

    [15]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414413

    [16]

    Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 242350

    [17]

    Fleischhauer M, Lukin M D 2000Phys. Rev. Lett. 84 5094

    [18]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001Phys. Rev. Lett. 86 783

    [19]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409490

    [20]

    Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, Walmsley I A 2010 Nature Photon. 4218

    [21]

    Meng X D, Tian L, Zhang Z Y, Yan Z H, Li S J, Wang H 2012 Acta Sin. Quantum Opt. 18357(in Chinese)[孟祥栋, 田龙, 张志英, 闫智辉, 李淑静, 王海2012量子光学学报18357]

    [22]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nature Photon. 9332

    [23]

    Yan Y, Li S J, Tian L, Wang H 2016Acta Phys. Sin. 65 014205 (in Chinese)[闫妍, 李淑静, 田龙, 王海2016 65 014205]

    [24]

    Julsgaard B, Sherson J, Cirac J I, Fiurasek J, Polzik E S 2004Nature 432 482

    [25]

    Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nature Commun. 2174

    [26]

    Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473190

    [27]

    Langer C, Ozeri R, Jost J D, Chiaverini J, DeMarco B, Ben-Kish A, Blakestad R B, Britton J, Hume D B, Itano W M, Leibfried D, Reichle R, Rosenband T, Schaetz T, Schmidt P O, Wineland D J 2005Phys. Rev. Lett. 95 060502

    [28]

    Hedges M P, Longdell J J, Li Y M, Sellars M J 2010Nature 465 1052

    [29]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015Phys. Rev. Lett. 114 090503

    [30]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008Phys. Rev. Lett. 100 093602

    [31]

    Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008Phys. Rev. Lett. 100 093601

    [32]

    Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio M B, Serafini A, Wolf M M, Polzik E S 2011 Nature Phys. 7 13

    [33]

    Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802

    [34]

    Zhang J X, Xie C D, Peng K C 2005Chin. Phys. Lett. 22 3005

    [35]

    Takei N, Aoki T, Koike S, Yoshino K, Wakui K, Yonezawa H, Hiraoka T, Mizuno J, Takeika M, Ban M, Furusawa A 2005Phys. Rev. A 72 042304

    [36]

    Hammerer K, Wolf M M, Polzik E S, Cirac J I 2005Phys. Rev. Lett. 94 150503

    [37]

    Owari M, Plenio M B, Polzik E S, Serafini A, Wolf M M 2008New. J. Phys. 10 113014

    [38]

    Adesso G, Chiribella G 2008Phys. Rev. Lett. 100 170503

    [39]

    Ou Z Y 2008Phys. Rev. A 78 023819

    [40]

    Scutaru H 1998J. Phys. A 31 3659

    [41]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2010New J. Phys. 12 093032

  • [1] Wang Yun-Fei, Zhou Ying, Wang Ying, Yan Hui, Zhu Shi-Liang. Performance and application analysis of quantum memory. Acta Physica Sinica, 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [2] Xiong Fan, Chen Yong-Cong, Ao Ping. Qubit dynamics driven by dipole field in thermal noise environment. Acta Physica Sinica, 2023, 72(17): 170302. doi: 10.7498/aps.72.20230625
    [3] Zhou Pai, Li Xia-Xia, Xing Xue-Yan, Chen Yu-Hui, Zhang Xiang-Dong. Quantum memory and manipulation based on erbium doped crystals. Acta Physica Sinica, 2022, 71(6): 064203. doi: 10.7498/aps.71.20211803
    [4] Zhou Yao-Yao, Liu Yan-Hong, Yan Zhi-Hui, Jia Xiao-Jun. A multifunctional quantum teleportation network. Acta Physica Sinica, 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749
    [5] Shi Tao, Lü Li-Hua, Li You-Quan. Selection of entanglement state in quantum repeater process. Acta Physica Sinica, 2021, 70(23): 230303. doi: 10.7498/aps.70.20211211
    [6] Shi Bao-Sen, Ding Dong-Sheng, Zhang Wei, Li En-Ze. Raman protocol-based quantum memories. Acta Physica Sinica, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [7] Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min. Research progress of quantum memory. Acta Physica Sinica, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [8] Yang Tian-Shu, Zhou Zong-Quan, Li Chuan-Feng, Guo Guang-Can. Multimode solid-state quantum memory. Acta Physica Sinica, 2019, 68(3): 030303. doi: 10.7498/aps.68.20182207
    [9] An Zi-Ye, Wang Xu-Jie, Yuan Zhen-Sheng, Bao Xiao-Hui, Pan Jian-Wei. Coherent manipulation of single collective excitations in a cold atomic ensemble. Acta Physica Sinica, 2018, 67(22): 224203. doi: 10.7498/aps.67.20181183
    [10] Huang Jiang. The protection of qudit states by weak measurement. Acta Physica Sinica, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [11] Jia Fang, Liu Cun-Jin, Hu Yin-Quan, Fan Hong-Yi. New formula for calculating the fidelity of teleportation and its applications. Acta Physica Sinica, 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [12] Yang Guang, Lian Bao-Wang, Nie Min. Fidelity recovery scheme for quantum teleportation in amplitude damping channel. Acta Physica Sinica, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [13] Qin Meng, Li Yan-Biao, Bai Zhong, Wang Xiao. Effects of different Dzyaloshinskii-Moriya interaction and magnetic field on entanglement and fidelity intrinsic decoherence in a spin system. Acta Physica Sinica, 2014, 63(11): 110302. doi: 10.7498/aps.63.110302
    [14] Nie Min, Zhang Lin, Liu Xiao-Hui. Poisson survival model of quantum entanglement signaling network and fidelity analysis. Acta Physica Sinica, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [15] Zhao Jian-Hui. Ground state phase diagram of the quantum spin 1 Blume-Capel model: reduced density fidelity study. Acta Physica Sinica, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [16] Lü Jing-Fen, Ma Shan-Jun. Fidelity of the photon subtracted (or added) squeezed vacuum state and squeezed cat state. Acta Physica Sinica, 2011, 60(8): 080301. doi: 10.7498/aps.60.080301
    [17] Fang Mao-Fa, Peng Xiao-Fang, Liao Xiang-Ping, Pan Chang-Ning, Fang Jian-Shu. Fidelity of quantum teleportation of atomic-state in dissipative environment. Acta Physica Sinica, 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [18] Universal telecloning of quantum entangled states. Acta Physica Sinica, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [19] Xia Yun-Jie, Wang Guang-Hui, Du Shao-Jiang. Fidelity of the scheme of continunous variables quantum teleportation via minimum-correlation mixed quantum states. Acta Physica Sinica, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [20] Zhang Deng-Yu, Guo Ping, Gao Feng. Fidelity of two-level atoms’ quantum states in a strong thermal radiation field. Acta Physica Sinica, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
Metrics
  • Abstract views:  6534
  • PDF Downloads:  298
  • Cited By: 0
Publishing process
  • Received Date:  03 August 2016
  • Accepted Date:  08 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回
Baidu
map