-
基于变换光学理论设计了一种新型的多功能电磁器件旋转集中器. 它以特殊的方式引导电磁波使其传播方向在器件核心区发生指定角度的旋转,并同时实现电磁场能量向该核心区的集中. 针对提出的三种等效的旋转集中器结构,分别推导了相应的本构参数表达式,并利用有限元软件对三种结构分别进行了全波仿真. 仿真结果验证了本构参数表达式的正确性. 这三种不同的结构中,前两种结构由三层介质构成,后一种简化为两层介质. 对于给定的任意旋转角度和能量集中率,三种结构可以使电磁场发生等效的传播方向旋转和能量集中两种效果. 这些结果有助于对旋转器和集中器机理的进一步理解,并为复合功能器件的设计奠定了更充分的理论基础. 本文提出的旋转集中器在设计高效率接收天线和特殊电路封装互联器件等方面都有潜在的应用前景.A novel multi-functional electromagnetic (EM) device named rotary-concentrator is designed based on transformation optics theory. For its ability to manipulate the EM wave in a special manner, it can rotate the propagation direction of the EM field in the core region to a fixed angle, as well as concentrate the EM energy into the core region simultaneously. For the proposed three equivalent configurations of the rotary-concentrator, the corresponding constitutive parameter expressions are derived respectively, and the full-wave simulations using the finite element software are also carried out. The simulated results validate the derived constitutive parameter expressions. For the three different kinds of configurations, the first two kinds consist of three layers of media, and the last one is simplified to a two-layer configuration. For a given arbitrary rotating angle and an energy concentration ratio, the three configurations can perform propagation direction rotating and energy concentrating in equivalent effect. These results contribute to further understanding of the mechanism of rotator and concentrator, and provide a fuller theoretical basis for the design of multi-functional devices. The proposed rotary-concentrator has potential applications in the design of high efficient receiving antennas and special circuit package interconnecting devices.
-
Keywords:
- rotary-concentrator /
- transformation optics /
- constitutive parameter /
- full-wave simulation
[1] Pendry J B, Schuring D, Smith D R 2006 Science 312 1780
[2] [3] Leonhardt U 2006 Science 312 1777
[4] [5] [6] Schurig D, Mock J J, Justice B J, Cummer S A, Pender J B, Starr A F, Smith D R 2006 Science 314 977
[7] [8] Cai W, Chettiar U K 2007 Nat. Photon. 1 224
[9] [10] Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901
[11] [12] Tretyakov S, Alitalo P, Luukkonen O, Simovski C 2009 Phys. Rev. Lett. 103 103905
[13] [14] Smolyaninov I I, Smolyaninova V N, Kildishev A V, Shalaev V M 2009 Phys. Rev. Lett. 102 213901
[15] [16] Leonhardt U, Tyc T 2009 Science 323 110
[17] [18] Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366
[19] Valentine J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 8 568
[20] [21] [22] Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photon. 3 461
[23] [24] Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337
[25] Wu Q, Zhang K, Meng F Y, Li Y W 2010 Acta Phys. Sin. 9 6071 (in Chinese) [吴群, 张狂, 孟繁义, 李乐伟 2010 9 6071]
[26] [27] Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Acta Phys. Sin. 60 027801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍 2011 60 027801]
[28] [29] [30] Wang X H, Qu S B, Xia S, Wang B K, Xu Z, Ma H, Wang J F, Gu C, Wu X, Lu L, Zhou H 2010 Chin. Phys. B 19 064101
[31] [32] Guo P F, Li D, Dai Q, Fu Y Q 2013 Chin. Phys. B 22 054101
[33] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105
[34] [35] [36] Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photon. Nanostruct. Fundam. Appl. 6 87
[37] Yan M, Yan W, Qiu M 2008 Phys. Rev. B 78 125113
[38] [39] Lai Y, Chen H Y, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 093901
[40] [41] Zhang J J, Luo Y, Xi S, Chen H S, Ran L X, Wu B I, Kong J A 2008 PIER Letters 81 437
[42] [43] [44] Jiang W X, Cui T J, Ma H F, Zhou X Y, Cheng Q 2008 Appl. Phys. Lett. 92 261903
[45] [46] Cojocaru E 2011 PIER Letters 21 147
[47] Yu G X, Jiang W X, Zhou X Y, Cui T J 2008 Eur. Phys. J. Appl. Phys. 44 181
[48] [49] Yang C F, Yang J J, Huang M, Peng J H, Niu W W 2010 J. Opt. Soc. Am. A 27 1994
[50] [51] [52] Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M 2008 Appl. Phys. Lett. 92 264101
[53] [54] Zha i Y B, Ping X W, Jiang W X, Cui T J 2010 Commun. Comput. Phys. 8 823
[55] [56] Li T, Huang M, Yang J, Mu S, Mao F 2011 PIER M 18 119
[57] Wang W, Lin L. Ma J X, Wang C T, Cui J H, Du C L, Luo X G 2008 Optics Express 16 11431
[58] [59] [60] Zhang K, Wu Q, Fu J H, Li L W 2011 J. Opt. Soc. Am. B 28 1573
[61] [62] Li W, Guan J G, Wang W 2011 J. Phys. D:Appl. Phys. 44 125401
[63] [64] Luo Y, Chen H S, Zhang J J, Ran L X, Kong J A l 2008 Phys. Rev. B 77 125127
[65] [66] Farhat M, Guenneau S, Enoch S 2011 J. Comput. Physics 230 2237
[67] [68] Zang X F, Jiang C 2011 J. Opt. Soc. Am. B 28 1082
[69] [70] Dai L M, Liao C, Zhou H J, Huang W Y 2011 J. Microwaves 27 93 (in Chinese) [代黎明, 廖成, 周海京, 黄文媛 2011 微波学报 27 93]
[71] Chen H Y, Chan C T 2008 Phy. Rev. B 78 054204
[72] [73] Chen H Y, Hou B, Chen S Y 2009 Phys. Rev. Lett. 102 183903
[74] Wu Q N, Xu Y D, Chen H Y 2012 Front. Phys. 7 315
[75] Liu G C, Li C, Chen C, Lu Z, Fang G Y 2012 Appl. Phys. Lett. 101 224105
-
[1] Pendry J B, Schuring D, Smith D R 2006 Science 312 1780
[2] [3] Leonhardt U 2006 Science 312 1777
[4] [5] [6] Schurig D, Mock J J, Justice B J, Cummer S A, Pender J B, Starr A F, Smith D R 2006 Science 314 977
[7] [8] Cai W, Chettiar U K 2007 Nat. Photon. 1 224
[9] [10] Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901
[11] [12] Tretyakov S, Alitalo P, Luukkonen O, Simovski C 2009 Phys. Rev. Lett. 103 103905
[13] [14] Smolyaninov I I, Smolyaninova V N, Kildishev A V, Shalaev V M 2009 Phys. Rev. Lett. 102 213901
[15] [16] Leonhardt U, Tyc T 2009 Science 323 110
[17] [18] Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366
[19] Valentine J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 8 568
[20] [21] [22] Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photon. 3 461
[23] [24] Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337
[25] Wu Q, Zhang K, Meng F Y, Li Y W 2010 Acta Phys. Sin. 9 6071 (in Chinese) [吴群, 张狂, 孟繁义, 李乐伟 2010 9 6071]
[26] [27] Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Acta Phys. Sin. 60 027801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍 2011 60 027801]
[28] [29] [30] Wang X H, Qu S B, Xia S, Wang B K, Xu Z, Ma H, Wang J F, Gu C, Wu X, Lu L, Zhou H 2010 Chin. Phys. B 19 064101
[31] [32] Guo P F, Li D, Dai Q, Fu Y Q 2013 Chin. Phys. B 22 054101
[33] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105
[34] [35] [36] Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photon. Nanostruct. Fundam. Appl. 6 87
[37] Yan M, Yan W, Qiu M 2008 Phys. Rev. B 78 125113
[38] [39] Lai Y, Chen H Y, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 093901
[40] [41] Zhang J J, Luo Y, Xi S, Chen H S, Ran L X, Wu B I, Kong J A 2008 PIER Letters 81 437
[42] [43] [44] Jiang W X, Cui T J, Ma H F, Zhou X Y, Cheng Q 2008 Appl. Phys. Lett. 92 261903
[45] [46] Cojocaru E 2011 PIER Letters 21 147
[47] Yu G X, Jiang W X, Zhou X Y, Cui T J 2008 Eur. Phys. J. Appl. Phys. 44 181
[48] [49] Yang C F, Yang J J, Huang M, Peng J H, Niu W W 2010 J. Opt. Soc. Am. A 27 1994
[50] [51] [52] Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M 2008 Appl. Phys. Lett. 92 264101
[53] [54] Zha i Y B, Ping X W, Jiang W X, Cui T J 2010 Commun. Comput. Phys. 8 823
[55] [56] Li T, Huang M, Yang J, Mu S, Mao F 2011 PIER M 18 119
[57] Wang W, Lin L. Ma J X, Wang C T, Cui J H, Du C L, Luo X G 2008 Optics Express 16 11431
[58] [59] [60] Zhang K, Wu Q, Fu J H, Li L W 2011 J. Opt. Soc. Am. B 28 1573
[61] [62] Li W, Guan J G, Wang W 2011 J. Phys. D:Appl. Phys. 44 125401
[63] [64] Luo Y, Chen H S, Zhang J J, Ran L X, Kong J A l 2008 Phys. Rev. B 77 125127
[65] [66] Farhat M, Guenneau S, Enoch S 2011 J. Comput. Physics 230 2237
[67] [68] Zang X F, Jiang C 2011 J. Opt. Soc. Am. B 28 1082
[69] [70] Dai L M, Liao C, Zhou H J, Huang W Y 2011 J. Microwaves 27 93 (in Chinese) [代黎明, 廖成, 周海京, 黄文媛 2011 微波学报 27 93]
[71] Chen H Y, Chan C T 2008 Phy. Rev. B 78 054204
[72] [73] Chen H Y, Hou B, Chen S Y 2009 Phys. Rev. Lett. 102 183903
[74] Wu Q N, Xu Y D, Chen H Y 2012 Front. Phys. 7 315
[75] Liu G C, Li C, Chen C, Lu Z, Fang G Y 2012 Appl. Phys. Lett. 101 224105
计量
- 文章访问数: 5699
- PDF下载量: 369
- 被引次数: 0