Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermodynamic properties of harmonic oscillator system in noncommutative phase space

Aili Mieralimujiang Mamat Mamatrishat Ghupur Yasenjan

Citation:

Thermodynamic properties of harmonic oscillator system in noncommutative phase space

Aili Mieralimujiang, Mamat Mamatrishat, Ghupur Yasenjan,
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the last 15 years, noncommutative effects have received much attention and have been extensively studied in the fields of quantum mechanics, field theory, condensed matter physics, and astrophysics. The aim of this paper is to investigate the thermodynamic properties of a harmonic oscillator system in noncommutative phase space. For an example, the effects of noncommutativity between positions and that between momenta in the phase space on thermodynamic properties of two- and three-dimensional harmonic oscillator system are studied by a statistical method. First, in the commutative phase space, the thermodynamic state functions are obtained from the partition functions of the harmonic oscillator system which satisfies Boltzmann statistics. Then, in the noncomummutative phase space, both noncommutative positions and noncommutative momenta are represented in terms of the commutative positions and momenta of the usual quantum mechanics by linear transformation method. Meanwhile, the other physical quantities such as the volume element, the number of microstates, and partition function in the noncommutative phase space are represented in terms of commutative positions and momenta. Finally, the thermodynamic and statistical state functions for the system in the noncommutative phase space are derived from the partition function, and the thermodynamic state functions in noncummutative and commutative phase spaces are compared with each other. The results show that the noncommutative effect changes the values of microscopic functions such as the partition function and entropy with the correction terms including noncummutative parameters. As the noncommutative parameters vanishes, i.e., reaches the commutative limit, the partition and entropy functions of the system coincide with the results of usual thermodynamics and statistical physics. Moreover, the macroscopic state functions such as the internal energy and heat capacity, remain constant. The results imply that the correction terms in the partition function and entropy may result from the corrections of the number of microstates and potential energy of the system by noncommutativity of the position and momentum. In conclusion, the method used in the paper is corresponding to the classical system that satisfies Boltzmann statistics, and the results derived here can provide a starting point for further studying the quantum system that satisfies Fermi-Dirac and Bose-Einstein statistics.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61366001), and the Scientific Research Starting Foundation for the Returned Doctorate Scholars, Xinjiang University, China (Grant No. 208-61344).
    [1]

    Snyder H 1947 Phys. Rev. 71 38

    [2]

    Banks T, Fischler W, Shenker S H, Susskind L 1997 Phys. Rev. D 55 5112

    [3]

    Anwar A, Dulat S 2012 J. Xinjiang Univ. (Nat. Sci. Ed.) 29 448 (in Chinese) [阿布都外力·艾尼瓦尔, 沙依甫加马力·达吾来提 2012 新疆大学学报(自然科学版) 29 448]

    [4]

    Dulat S, Li K 2009 Eur. Phys. J. C 60 163

    [5]

    Ma K, Dulat S 2011 Phys. Rev. A 84 012104

    [6]

    Masum H, Dulat S, Ma K 2012 J. Xinjiang Univ. (Nat. Sci. Edi) 29 318 (in Chinese) [玉苏音·买苏木, 沙依甫加马力·达吾来提, 马凯 2012 新疆大学学报(自然科学版) 29 318]

    [7]

    Li K, Chamoun N 2006 Chin. Phys. Lett. 23 1122

    [8]

    Yakup R, Dulat S, and Obulkasim A 2012 Coll. Phys. 31 1 (in Chinese) [热依木阿吉·亚克甫, 沙依甫加马力·达吾来提, 阿斯叶古丽·吾布力卡丝木 2012 大学物理 31 1]

    [9]

    Luo Y H, Ge Z M 2006 Commun. Theor. Phys. 46 967

    [10]

    Zhang X L, Liu H, Yu H J, Zhang W H 2011 Acta Phys. Sin. 60 040303 (in Chinese) [张秀兰, 刘恒, 余海军, 张文海 2011 60 040303]

    [11]

    Wei G F, Long C Y, Long Z W, Qin S J, Fu Q 2008 Chin. Phys. C 32 338

    [12]

    Sun Y Q, Long S M, Huang C J, Zhang K 2008 J. Sichuan Nor. Univ. (Nat. Sci. Ed.) 31 342 (in Chinese) [孙彦清,龙姝明,黄朝军,张锴 2008 四川师范大学学报(自然科学版) 31 342]

    [13]

    Mamat M, Dulat S, Wupur Y 2014 Coll. Phys. 313 11 (in Chinese) [买买提热夏提·买买提, 沙依甫加马力·达吾来提, 亚森江·吾普尔, 买买吐尔逊·巴卡吉 2014 大学物理 33 11]

    [14]

    Zhou S W, Liu W B 2007 Acta Phys. Sin. 56 6767 (in Chinese) [周史薇, 刘文彪 2007 56 6767]

    [15]

    Huang J H, Sheng Z M 2010 Chin. Phys. B 19 010316

    [16]

    Bastos C, Bernardini A E, Bertolami O, Dias N C, Prata J N 2014 Phys. Rev. D 90 045023

    [17]

    Samary D O 2014 Int. J. Math. Anal. 8 1285

    [18]

    Panella O, Roy P 2014 Phys. Rev. A 90 042111

    [19]

    Santos V, Maluf R V, Almeida C A S 2014 Ann. Phys. 349 402

    [20]

    Han Y W, Hong Y 2014 Chin. Phy. B 23 100401

    [21]

    Belhaj A, Chabab M, Moumni H E, Sedra M B 2013 Afr. Rev. Phys. 8 105

    [22]

    Liang J, Liu Y C, Zhu Q 2014 Chin. Phys. C 38 025101

    [23]

    Wang Z C 2010 Thermodynamics and Statistical Physics (Beijing: Higher Education Press) p190 (in Chinese) [王志诚 2010 热力学·统计物理(北京: 高等教育出版社) 第190页]

    [24]

    Li K, Wang J H, Chen C Y 2005 Mod. Phys. Lett. A 20 2165

    [25]

    Seiberg N, Witten E 1994 Nucl. Phys. B 426 19

    [26]

    Wang J H, Li K, Liu P 2006 HEP & NP 30 387 (in Chinese) [王剑华, 李康, 刘鹏 2006 高能物理与核物理 30 387]

    [27]

    Bertolami O, Rosa J G, de Aragao C M L, Castorina P, Zappala D 2005 Phys. Rev. D 72 025010

    [28]

    Mojtaba N, Mehdi S 2013 Chin. J. Phys. 51 94

    [29]

    Chaichian M, Sheikh Jabbari M M, Tureanu A 2001 Phys. Rev. Lett. 86 2716

  • [1]

    Snyder H 1947 Phys. Rev. 71 38

    [2]

    Banks T, Fischler W, Shenker S H, Susskind L 1997 Phys. Rev. D 55 5112

    [3]

    Anwar A, Dulat S 2012 J. Xinjiang Univ. (Nat. Sci. Ed.) 29 448 (in Chinese) [阿布都外力·艾尼瓦尔, 沙依甫加马力·达吾来提 2012 新疆大学学报(自然科学版) 29 448]

    [4]

    Dulat S, Li K 2009 Eur. Phys. J. C 60 163

    [5]

    Ma K, Dulat S 2011 Phys. Rev. A 84 012104

    [6]

    Masum H, Dulat S, Ma K 2012 J. Xinjiang Univ. (Nat. Sci. Edi) 29 318 (in Chinese) [玉苏音·买苏木, 沙依甫加马力·达吾来提, 马凯 2012 新疆大学学报(自然科学版) 29 318]

    [7]

    Li K, Chamoun N 2006 Chin. Phys. Lett. 23 1122

    [8]

    Yakup R, Dulat S, and Obulkasim A 2012 Coll. Phys. 31 1 (in Chinese) [热依木阿吉·亚克甫, 沙依甫加马力·达吾来提, 阿斯叶古丽·吾布力卡丝木 2012 大学物理 31 1]

    [9]

    Luo Y H, Ge Z M 2006 Commun. Theor. Phys. 46 967

    [10]

    Zhang X L, Liu H, Yu H J, Zhang W H 2011 Acta Phys. Sin. 60 040303 (in Chinese) [张秀兰, 刘恒, 余海军, 张文海 2011 60 040303]

    [11]

    Wei G F, Long C Y, Long Z W, Qin S J, Fu Q 2008 Chin. Phys. C 32 338

    [12]

    Sun Y Q, Long S M, Huang C J, Zhang K 2008 J. Sichuan Nor. Univ. (Nat. Sci. Ed.) 31 342 (in Chinese) [孙彦清,龙姝明,黄朝军,张锴 2008 四川师范大学学报(自然科学版) 31 342]

    [13]

    Mamat M, Dulat S, Wupur Y 2014 Coll. Phys. 313 11 (in Chinese) [买买提热夏提·买买提, 沙依甫加马力·达吾来提, 亚森江·吾普尔, 买买吐尔逊·巴卡吉 2014 大学物理 33 11]

    [14]

    Zhou S W, Liu W B 2007 Acta Phys. Sin. 56 6767 (in Chinese) [周史薇, 刘文彪 2007 56 6767]

    [15]

    Huang J H, Sheng Z M 2010 Chin. Phys. B 19 010316

    [16]

    Bastos C, Bernardini A E, Bertolami O, Dias N C, Prata J N 2014 Phys. Rev. D 90 045023

    [17]

    Samary D O 2014 Int. J. Math. Anal. 8 1285

    [18]

    Panella O, Roy P 2014 Phys. Rev. A 90 042111

    [19]

    Santos V, Maluf R V, Almeida C A S 2014 Ann. Phys. 349 402

    [20]

    Han Y W, Hong Y 2014 Chin. Phy. B 23 100401

    [21]

    Belhaj A, Chabab M, Moumni H E, Sedra M B 2013 Afr. Rev. Phys. 8 105

    [22]

    Liang J, Liu Y C, Zhu Q 2014 Chin. Phys. C 38 025101

    [23]

    Wang Z C 2010 Thermodynamics and Statistical Physics (Beijing: Higher Education Press) p190 (in Chinese) [王志诚 2010 热力学·统计物理(北京: 高等教育出版社) 第190页]

    [24]

    Li K, Wang J H, Chen C Y 2005 Mod. Phys. Lett. A 20 2165

    [25]

    Seiberg N, Witten E 1994 Nucl. Phys. B 426 19

    [26]

    Wang J H, Li K, Liu P 2006 HEP & NP 30 387 (in Chinese) [王剑华, 李康, 刘鹏 2006 高能物理与核物理 30 387]

    [27]

    Bertolami O, Rosa J G, de Aragao C M L, Castorina P, Zappala D 2005 Phys. Rev. D 72 025010

    [28]

    Mojtaba N, Mehdi S 2013 Chin. J. Phys. 51 94

    [29]

    Chaichian M, Sheikh Jabbari M M, Tureanu A 2001 Phys. Rev. Lett. 86 2716

  • [1] Fan Jun-Yu, Gao Nan, Wang Peng-Ju, Su Yan. Intermolecular interactions and thermodynamic properties of LLM-105. Acta Physica Sinica, 2024, 73(4): 046501. doi: 10.7498/aps.73.20231696
    [2] Gou Li-Dan. On noncommutative energy spectra in two-dimensional coupling harmonic oscillator. Acta Physica Sinica, 2021, 70(20): 200301. doi: 10.7498/aps.70.20210092
    [3] Jian Jun, Lei Jiao, Fan Qun-Chao, Fan Zhi-Xiang, Ma Jie, Fu Jia, Li Hui-Dong, Xu Yong-Gen. Theoretical study on thermodynamic properties of NO gas. Acta Physica Sinica, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [4] Huang Ao, Lu Zhi-Peng, Zhou Meng, Zhou Xiao-Yun, Tao Ying-Qi, Sun Peng, Zhang Jun-Tao, Zhang Ting-Bo. Effects of the doping of Al and O interstitial atoms on thermodynamic properties of -Al2O3:first-principles calculations. Acta Physica Sinica, 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [5] Wu Ruo-Xi, Liu Dai-Jun, Yu Yang, Yang Tao. First-principles investigations on structure and thermodynamic properties of CaS under high pressures. Acta Physica Sinica, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [6] Li He-Ling, Wang Juan-Juan, Yang Bin, Shen Hong-Jun. Investigation of thermodynamic properties of weakly interacting Fermi gas in weakly magnetic field by using the N-E-V distribution and pseudopotential method. Acta Physica Sinica, 2015, 64(4): 040501. doi: 10.7498/aps.64.040501
    [7] Chen Xin-Long, Men Fu-Dian, Tian Qing-Song. Effect of anomalous magnetic moment on thermodynamic properties of weakly interacting Fermi gas in weak magnetic field. Acta Physica Sinica, 2015, 64(8): 080501. doi: 10.7498/aps.64.080501
    [8] Ding Guang-Tao. A study on the first integrals of harmonic oscillators. Acta Physica Sinica, 2013, 62(6): 064502. doi: 10.7498/aps.62.064502
    [9] Men Fu-Dian, Wang Bing-Fu, He Xiao-Gang, Wei Qun-Mei. Thermodynamic properties of a weakly interacting Fermi gas in a strong magnetic field. Acta Physica Sinica, 2011, 60(8): 080501. doi: 10.7498/aps.60.080501
    [10] Li Xiao-Feng, Liu Zhong-Li, Peng Wei-Min, Zhao A-Ke. Elastic and thermodynamic properties of CaPo under pressure via first-principles calculations. Acta Physica Sinica, 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [11] Li Shi-Na, Liu Yong. First-principles calculation of elastic and thermodynamic properties of copper nitride. Acta Physica Sinica, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [12] Chen Yi, Shen Jiang. Structural and thermodynamic properties of Fe based compounds with NaZn13-type. Acta Physica Sinica, 2009, 58(13): 141-S145. doi: 10.7498/aps.58.141
    [13] Li Xing-Hua, Yang Ya-Tian, Xu Gong-Ou. Near classical states of oscillator in square potential well with infinitely high walls. Acta Physica Sinica, 2009, 58(11): 7466-7472. doi: 10.7498/aps.58.7466
    [14] Men Fu-Dian. Thermodynamic properties of a weakly interacting Fermi gas in weak magnetic field. Acta Physica Sinica, 2006, 55(4): 1622-1627. doi: 10.7498/aps.55.1622
    [15] Yuan Du-Qi. The influence of weak interaction on thermodynamic properties and the stability of imperfect Bose gas. Acta Physica Sinica, 2006, 55(4): 1634-1638. doi: 10.7498/aps.55.1634
    [16] Fu Mei-Huan, Ren Zhong-Zhou. Four kinds of raising and lowering operators of three-dimensional isotropic harmonic oscillators with spin-orbit coupling. Acta Physica Sinica, 2004, 53(5): 1280-1283. doi: 10.7498/aps.53.1280
    [17] Zhang Ya-Nan, Yan Shi-Lei. Thermodynamic properties of random transverse mixed Ising spin system with cryst al field. Acta Physica Sinica, 2003, 52(11): 2890-2895. doi: 10.7498/aps.52.2890
    [18] Huang Bo-Wen. A time-dependent damped harmonic oscillator with a force quadratic in velocity. Acta Physica Sinica, 2003, 52(2): 271-275. doi: 10.7498/aps.52.271
    [19] Wang Ping, Yang Xin-E, Song Xiao-Hui. Exact solution for a harmonic oscillator with a time-dependent inverse square po tential by path-integral. Acta Physica Sinica, 2003, 52(12): 2957-2960. doi: 10.7498/aps.52.2957
    [20] ZHU YONG-QIANG, WANG YU, SHEN BIN-BIN, HONG XIN-FENG, LIANG ZI-CHANG. THE CHARACTER AND APPLICATION OF THE SMASHED ELECTROMAGNETIC WAVE. Acta Physica Sinica, 2001, 50(5): 832-836. doi: 10.7498/aps.50.832
Metrics
  • Abstract views:  6578
  • PDF Downloads:  373
  • Cited By: 0
Publishing process
  • Received Date:  05 December 2014
  • Accepted Date:  10 February 2015
  • Published Online:  05 July 2015

/

返回文章
返回
Baidu
map