-
Ionizing-radiation-induced oxide-trapped charges and interface states cause the current and 1/f noise degradation in bipolar junction transistors. In order to better understand these two degradation mechanisms and develop hardening approaches for a specific process technology, it is necessary to measure the effect of each mechanism separately. In recent years, several techniques have been developed, but no charge-separation approach based on 1/f noise for NPN bipolar junction transistors is available. In this paper, the effects of ionizing-radiation-induced oxide trapped charges and interface states on base current and 1/f noise in NPN bipolar junction transistors are studied in detail. Firstly, a new model of base surface current of NPN bipolar junction transistors is presented with some approximations, based on an available model for the base surface current under certain conditions; this model can identify the physical mechanism responsible for the current degradation. Secondly, combining the theory of carrier number fluctuation and the new model of base surface current another model is developed which can well explain the 1/f noise degradation. This model suggests that the induced oxide-trapped charges would make more carriers, involving the dynamic trapping-detrapping, which leads to the 1/f noise to increase; and the induced oxide-trapped charges and interface states can also bring about an increase in base surface current which can also cause the l/f noise increase. These two models suggest that the current and1/f noise degradations can be attributed to the same physical origin, and these two kinds of degradations are the result of accumulation of oxide-trapped charges and interface states. According to these two models, simple approaches for quantifying the effects of oxide-trapped charges and interface states are proposed. The base surface current can be extracted from the base current using the available method. The oxide-trapped charge density is estimated using the amplitude of 1/f noise (10-100 Hz) and the base surface current. Given the estimated oxide-trapped charge density, the interface state density can be estimated using the base surface current. These methods are simple to implement and can provide insight into the mechanisms and magnitudes of the radiation-induced damage in NPN bipolar junction transistors.
-
Keywords:
- radiation /
- 1/f noise /
- oxide-trapped charge /
- interface state
[1] Fleetwood D M, Riewe L C, Schwank J R, Witczak, Schrimpf R D 1996 IEEE Trans. Nucl. Sci. 43 2537
[2] Petrov A S, Ulimov V N 2012 Miroelectron. Reliab. 52 2435
[3] Zhang T, Liu Y, Li B 2013 IEEE International Conference of Electron Devices and Solid-State Circuits Hong Kong, China, June 3-5, 2013 p1
[4] Kosier S L, Schrimpf R D, Nowlin R N, Fleetwood D M 1993 IEEE Trans. Nucl. Sci. 40 1276
[5] Belyakov V V, Pershenkov V S, Shalnov A V, Shvetzov-Shilovsky I N 1999 IEEE Trans. Nucl. Sci. 46 1660
[6] Barnaby H J, Cirba C, Schrimpf R D, Kosier S, Fouillat P, Montangner X 1999 IEEE Trans. Nucl. Sci. 46 1652
[7] Ball D R, Schrimpf R D, Barnaby H J 2002 IEEE Trans. Nucl. Sci. 49 3185
[8] Minson E, Sanchez I, Barnaby H J, Pease R L, Platteter D G, Dunham G 2004 IEEE Trans. Nucl. Sci. 51 3723
[9] Nowlin R N, Pease R L, Platteter D G, Dunham G W, Seiler J E 2005 IEEE Trans. Nucl. Sci. 52 2609
[10] Hughart D R, Schrimpf R D, Fleetwood D M, Chen X J, Barnaby H J, Holbert K E, Pease R L, Platteter D G 2009 IEEE Trans. Nucl. Sci. 56 3361
[11] Gonzalez-Velo Y, Boch J, Saign, Roche N, Prez S 2011 IEEE Trans. Nucl. Sci. 58 2953
[12] Adell P C, Esqueda I S, Barnaby H J, Rax B, Johnston A H 2012 IEEE Trans.Nucl. Sci. 59 3081
[13] Xi S B, Lu W, Ren D Y, Zhou D, Wen L, Sun J, Wu X 2012 Acta Phys. Sin. 61 236103 (in Chinese) [席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪 2012 61 236103]
[14] Xi S B, Lu W, Wang Z K, Ren D Y, Zhou D, Wen L, Sun J, Wu X 2012 Acta Phys. Sin. 61 076101 (in Chinese) [席善斌, 陆妩, 王志宽, 任迪远, 周东, 文林, 孙静 2012 61 076101]
[15] Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101 (in Chinese) [马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 63 116101]
[16] Sun P, Du L, Chen W H, He L 2012 Acta Phys. Sin. 61 067801 (in Chinese) [孙鹏, 杜磊, 陈文豪, 何亮 2012 61 067801]
[17] Liu Y A, Zhuang Y Q, Ma X H, Du M, Bao J L, Li C 2014 Chin. Phys. B 23 020701
[18] Jayaraman R, Sodini C G 1989 IEEE Trans Electron Dev. 36 1773
[19] Wong H, Cheng Y C 1990 IEEE Trans Electron Dev. 37 1743
[20] Zhuang Y Q, Sun Q, Hou X 1996 Journal of Semiconductors 17 446 (in Chinese) [庄奕琪, 孙青, 侯洵 1996 半导体学报 17 446]
[21] Mounib A, Ghibaudo G, Balestra F, Pogany D, Chantre A, Chroboczek 1996 J. Appl. Phys. 79 3330
[22] Zhuang Y Q, Sun Q 1993 Noise and its Minimizing Technology in Semiconductor Devices (Beijing: National Defenses Industry Press) p99 (in Chinese) [庄奕琪, 孙青 1993半导体器件中的噪声及其低噪声化技术(北京: 国防工业出版社)第99页]
[23] Bao J L, Zhuang Y Q, Du L, Li W H 2004 Chinese Journal of Scientific Instrument 25 351 (in Chinese) [包军林, 庄奕琪, 杜磊, 李伟华2004 仪器仪表学报25 351]
[24] Deen M J, Rumyantsev S L, Schroter M 1999 J. Appl. Phys. 85 1192
[25] Green C T, Jones B K 1985 J. Phys. D: Appl. Phys. 18 77
-
[1] Fleetwood D M, Riewe L C, Schwank J R, Witczak, Schrimpf R D 1996 IEEE Trans. Nucl. Sci. 43 2537
[2] Petrov A S, Ulimov V N 2012 Miroelectron. Reliab. 52 2435
[3] Zhang T, Liu Y, Li B 2013 IEEE International Conference of Electron Devices and Solid-State Circuits Hong Kong, China, June 3-5, 2013 p1
[4] Kosier S L, Schrimpf R D, Nowlin R N, Fleetwood D M 1993 IEEE Trans. Nucl. Sci. 40 1276
[5] Belyakov V V, Pershenkov V S, Shalnov A V, Shvetzov-Shilovsky I N 1999 IEEE Trans. Nucl. Sci. 46 1660
[6] Barnaby H J, Cirba C, Schrimpf R D, Kosier S, Fouillat P, Montangner X 1999 IEEE Trans. Nucl. Sci. 46 1652
[7] Ball D R, Schrimpf R D, Barnaby H J 2002 IEEE Trans. Nucl. Sci. 49 3185
[8] Minson E, Sanchez I, Barnaby H J, Pease R L, Platteter D G, Dunham G 2004 IEEE Trans. Nucl. Sci. 51 3723
[9] Nowlin R N, Pease R L, Platteter D G, Dunham G W, Seiler J E 2005 IEEE Trans. Nucl. Sci. 52 2609
[10] Hughart D R, Schrimpf R D, Fleetwood D M, Chen X J, Barnaby H J, Holbert K E, Pease R L, Platteter D G 2009 IEEE Trans. Nucl. Sci. 56 3361
[11] Gonzalez-Velo Y, Boch J, Saign, Roche N, Prez S 2011 IEEE Trans. Nucl. Sci. 58 2953
[12] Adell P C, Esqueda I S, Barnaby H J, Rax B, Johnston A H 2012 IEEE Trans.Nucl. Sci. 59 3081
[13] Xi S B, Lu W, Ren D Y, Zhou D, Wen L, Sun J, Wu X 2012 Acta Phys. Sin. 61 236103 (in Chinese) [席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪 2012 61 236103]
[14] Xi S B, Lu W, Wang Z K, Ren D Y, Zhou D, Wen L, Sun J, Wu X 2012 Acta Phys. Sin. 61 076101 (in Chinese) [席善斌, 陆妩, 王志宽, 任迪远, 周东, 文林, 孙静 2012 61 076101]
[15] Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101 (in Chinese) [马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 63 116101]
[16] Sun P, Du L, Chen W H, He L 2012 Acta Phys. Sin. 61 067801 (in Chinese) [孙鹏, 杜磊, 陈文豪, 何亮 2012 61 067801]
[17] Liu Y A, Zhuang Y Q, Ma X H, Du M, Bao J L, Li C 2014 Chin. Phys. B 23 020701
[18] Jayaraman R, Sodini C G 1989 IEEE Trans Electron Dev. 36 1773
[19] Wong H, Cheng Y C 1990 IEEE Trans Electron Dev. 37 1743
[20] Zhuang Y Q, Sun Q, Hou X 1996 Journal of Semiconductors 17 446 (in Chinese) [庄奕琪, 孙青, 侯洵 1996 半导体学报 17 446]
[21] Mounib A, Ghibaudo G, Balestra F, Pogany D, Chantre A, Chroboczek 1996 J. Appl. Phys. 79 3330
[22] Zhuang Y Q, Sun Q 1993 Noise and its Minimizing Technology in Semiconductor Devices (Beijing: National Defenses Industry Press) p99 (in Chinese) [庄奕琪, 孙青 1993半导体器件中的噪声及其低噪声化技术(北京: 国防工业出版社)第99页]
[23] Bao J L, Zhuang Y Q, Du L, Li W H 2004 Chinese Journal of Scientific Instrument 25 351 (in Chinese) [包军林, 庄奕琪, 杜磊, 李伟华2004 仪器仪表学报25 351]
[24] Deen M J, Rumyantsev S L, Schroter M 1999 J. Appl. Phys. 85 1192
[25] Green C T, Jones B K 1985 J. Phys. D: Appl. Phys. 18 77
Catalog
Metrics
- Abstract views: 6064
- PDF Downloads: 137
- Cited By: 0