-
Due to their unusual electrical conductivity, carbon nanotubes as the ideal candidates for making future electronic components have extensive application potentiality. In order to meet the requirements in space electronic components for carbon nanotubes, effect of 170 keV proton irradiation on structure and electrical conductivity of multi-walled carbon nanotubes (MWCNTs) film is investigated in this paper. Surface morphologies and microstructure of the carbon nanotube films are examined by scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy, respectively. Electrical conductivities of the carbon nanotube films before and after 170 keV proton irradiation are measured using four-point probe technique. SEM analysis reveals that when proton irradiation fluence is greater than 51015 p/cm2, the surface of the carbon nanotube film becomes rough and loose, and obvious bending, shrinkage, and entanglement of nanotubes are observed. Moreover, the shrinkage phenomenon of MWCNTs caused by proton irradiation is found the first time so far as we know. Based on Raman and XPS analyses, it is confirmed that 170 keV protons can improve the ordered structure of the MWCNTs, and irradiation fluence plays a key role in reducing the disorder in the MWCNTs. Improvement of the irradiated MWCNTs by 170 keV protons can be attributed to restructuring of defect sites induced by knock-on atom displacements. On the other hand, carbon impurities on surface of the MWCNT film are reduced due to the effect of sputtering by the 170 keV proton irradiation, which is also helpful to the improvement of the structure of carbon nanotubes. EPR spectra show that the electrons delocalized over carbon nanotubes decrease with increasing irradiation fluence, implying that the carbon nanotube film is not sensitive to ionizing radiation induced by the 170 keV protons, and the electrical conductivities of the MWCNTs films may be decreased. Four-point probe technical analysis shows that with increasing irradiation fluence, electrical properties of the carbon nanotubes film deteriorate, which can be attributed to the changes in electronic properties and morphology of the MWCNT films induced by 170 keV protons. Acquired results could be beneficial to tailoring of structure and properties for the carbon nanotubes film irradiated by protons to develop nanoelectronics of radiation-resistant systems.
-
Keywords:
- carbon nanotubes /
- proton irradiation /
- irradiation effects /
- electrical conductivity
[1] Iijima S 1991 Nature 354 56
[2] Endo M, Strano M S, Ajayan P M 2008 Top Appl. Phys. 111 13
[3] Li P J, Zhang W J, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 1054 (in Chinese) [李萍剑, 张文静, 张琦锋, 吴锦雷 2007 56 1054]
[4] Basiuk V A, Kobayashi K Kaneko T 2002 Nano Lett. 2 789
[5] Khare B, Meyyappan M, More M H 2003 Nano Lett. 3 643
[6] Li B, Feng Y, Ding K W, Qian G, Zhang X B, Liu Y F 2014 Trans. Nonferrous Met. Soc. China. 24 764
[7] Ishaq A, Iqbal S, Ali N, Khurram A A, Akrajas A U, Dee C F, Naseem S, Rafique H M 2013 New Carbon Mater. 28 81 (in Chinese) [Ishaq A, Iqbal S, Ali N, Khurram A A, Akrajas A U, Dee C F, Naseem S, Rafique H M, 闫隆 2013 新型炭材料 28 81]
[8] Yang T Z, Lou S Z 2010 Acta Phys. Sin. 59 447 (in Chinese) [杨通在, 罗顺忠 2010 59 447]
[9] Li L X, Su J B, Wu Y, Zhu X F, Wang Z G 2012 Acta Phys. Sin. 61 036401 (in Chinese) [李论雄, 苏江滨, 吴燕, 朱贤方, 王占国 2012 61 036401]
[10] Hong W K, Lee C, Nepal D, Geckeler K E, Shin K, Lee T 2006 Nanotechnology 17 5675
[11] Yan L, Zhou G Y, Ishaq A, He S X, Gong J L, Zhu D Z 2010 Nucl. Sci. Tech. 33 44 (in Chinese) [闫隆, 周广颖, A Ishaq, 何绥霞, 巩金龙, 朱德彰 2010 核技术 33 44]
[12] Ishaq A, Yan L, Zhu D Z 2009 Nucl. Instrum. Methods Phys. Res. B 267 1779
[13] Banhart F 1999 Rep. Prog. Phys. 62 1181
[14] Chopra N G, Ross F M, Zettle A 1996 Chem. Phys. Lett. 256 241
[15] Banhart F, Li J X, Krasheninnikov A V 2005 Phys. Rev. B 71 241408
[16] Ajayan P M, Ravikumar V, Charlier J C 1998 Phys. Rev. Lett. 81 1437
[17] Kiang C H, Goddard W A, Beyers R 1996 J Phys. Chem. B 100 3749
[18] Terrones H, Terrones M, Hernandez E 2000 Phys. Rev. Lett. 84 1716
[19] Bacsa W S, Ugarte D, Chatelain A, Deheer W A 1994 Phys. Rev. B 50 15473
[20] Ni Z C, Li Q T, Gong J L, Zhu D Z, Zhu Z Y 2007 Nucl. Instrum. Methods Phys. Res. B 260 542
[21] Safibonab B, Reyhani A, Golikand A N, Mortazavi S Z, Mirershadi S, Ghoranneviss M 2011 Appl. Surf. Sci. 258 766
[22] Xu T, Yang J H, Liu J W, Fu Q 2007 Appl. Surf. Sci. 253 8945
[23] Beuneu F, l'Huillier C, Salvetat J P, Bonard J M, Forro L 1999 Phys. Rev. B 59 5945
[24] Adhikari A R, Bakhru H, Ajayan P M, Benson R, Chipara M 2007 Nucl. Instrum. Methods Phys. Res. B 265 347
[25] Li X J, Liu C M, Geng H B, Rui E M, Yang D Z, He S Y 2012 IEEE Trans. Nucl. Sci. 59 439
[26] Li X J, Geng H B, Liu C M, Zhao Z M, Yang D Z, He S Y 2010 IEEE Trans. Nucl. Sci. 57 831
-
[1] Iijima S 1991 Nature 354 56
[2] Endo M, Strano M S, Ajayan P M 2008 Top Appl. Phys. 111 13
[3] Li P J, Zhang W J, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 1054 (in Chinese) [李萍剑, 张文静, 张琦锋, 吴锦雷 2007 56 1054]
[4] Basiuk V A, Kobayashi K Kaneko T 2002 Nano Lett. 2 789
[5] Khare B, Meyyappan M, More M H 2003 Nano Lett. 3 643
[6] Li B, Feng Y, Ding K W, Qian G, Zhang X B, Liu Y F 2014 Trans. Nonferrous Met. Soc. China. 24 764
[7] Ishaq A, Iqbal S, Ali N, Khurram A A, Akrajas A U, Dee C F, Naseem S, Rafique H M 2013 New Carbon Mater. 28 81 (in Chinese) [Ishaq A, Iqbal S, Ali N, Khurram A A, Akrajas A U, Dee C F, Naseem S, Rafique H M, 闫隆 2013 新型炭材料 28 81]
[8] Yang T Z, Lou S Z 2010 Acta Phys. Sin. 59 447 (in Chinese) [杨通在, 罗顺忠 2010 59 447]
[9] Li L X, Su J B, Wu Y, Zhu X F, Wang Z G 2012 Acta Phys. Sin. 61 036401 (in Chinese) [李论雄, 苏江滨, 吴燕, 朱贤方, 王占国 2012 61 036401]
[10] Hong W K, Lee C, Nepal D, Geckeler K E, Shin K, Lee T 2006 Nanotechnology 17 5675
[11] Yan L, Zhou G Y, Ishaq A, He S X, Gong J L, Zhu D Z 2010 Nucl. Sci. Tech. 33 44 (in Chinese) [闫隆, 周广颖, A Ishaq, 何绥霞, 巩金龙, 朱德彰 2010 核技术 33 44]
[12] Ishaq A, Yan L, Zhu D Z 2009 Nucl. Instrum. Methods Phys. Res. B 267 1779
[13] Banhart F 1999 Rep. Prog. Phys. 62 1181
[14] Chopra N G, Ross F M, Zettle A 1996 Chem. Phys. Lett. 256 241
[15] Banhart F, Li J X, Krasheninnikov A V 2005 Phys. Rev. B 71 241408
[16] Ajayan P M, Ravikumar V, Charlier J C 1998 Phys. Rev. Lett. 81 1437
[17] Kiang C H, Goddard W A, Beyers R 1996 J Phys. Chem. B 100 3749
[18] Terrones H, Terrones M, Hernandez E 2000 Phys. Rev. Lett. 84 1716
[19] Bacsa W S, Ugarte D, Chatelain A, Deheer W A 1994 Phys. Rev. B 50 15473
[20] Ni Z C, Li Q T, Gong J L, Zhu D Z, Zhu Z Y 2007 Nucl. Instrum. Methods Phys. Res. B 260 542
[21] Safibonab B, Reyhani A, Golikand A N, Mortazavi S Z, Mirershadi S, Ghoranneviss M 2011 Appl. Surf. Sci. 258 766
[22] Xu T, Yang J H, Liu J W, Fu Q 2007 Appl. Surf. Sci. 253 8945
[23] Beuneu F, l'Huillier C, Salvetat J P, Bonard J M, Forro L 1999 Phys. Rev. B 59 5945
[24] Adhikari A R, Bakhru H, Ajayan P M, Benson R, Chipara M 2007 Nucl. Instrum. Methods Phys. Res. B 265 347
[25] Li X J, Liu C M, Geng H B, Rui E M, Yang D Z, He S Y 2012 IEEE Trans. Nucl. Sci. 59 439
[26] Li X J, Geng H B, Liu C M, Zhao Z M, Yang D Z, He S Y 2010 IEEE Trans. Nucl. Sci. 57 831
Catalog
Metrics
- Abstract views: 6839
- PDF Downloads: 210
- Cited By: 0