Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Computer simulation on temperature-dependent internal charging of complex dielectric structure

Yi Zhong Wang Song Tang Xiao-Jin Wu Zhan-Cheng Zhang Chao

Citation:

Computer simulation on temperature-dependent internal charging of complex dielectric structure

Yi Zhong, Wang Song, Tang Xiao-Jin, Wu Zhan-Cheng, Zhang Chao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Some dielectric structures on satellites would experience temperature variation in a relatively large range, giving rise to a considerable change in its conductivity and consequently resulting in a significant influence on the dielectric internal charging. However, due to the limitation to the model of conductivity versus temperature and the tool for three-dimensional (3D) simulation of internal charging, this temperature dependence has not attracted much attention. Therefore, the conductivity of a satellite used modified polyimide is measured in a temperature changeable vacuum environment under high electric field (in MV/m). Keithley 6517 B is used to capture the mild electrical current in a relatively long measuring time (several hundred seconds). According to the Arrhenius temperature dependence and considering the conductivity enhancement due to high electric field, good agreement is obtained between fitted data and measured results by setting the activation energy to be 0.40 eV. In addition, the radiation induced conductivity (RIC) is taken into account by using the Fowler model. The conductivity at room temperature is found to be comparable to the RIC from the condition with 2 mm aluminum shielding. Using the derived results, the internal charging simulation in three dimensions is carried out for a selected part of a structure in this material, where Geant4 is used to derive the distribution of charge deposition and radiation dose in three dimensions. The incident energetic electrons are assumed to follow the exponential distribution under geosynchronous orbit severe radiation condition where the flux of electrons with energy larger than 2 MeV is assumed to be 1.0×109 m-2·-1·sr-1. It is found that the internal charging will become more serious as the temperature decreases. The charging time is about 1 h at temperature 330 K, whereas this time is increased to 10 h for temperature below 250 K. The most serious charging domain appears around the boundary line of the grounding surface close to the radiation source, where the electric field strength exceeds 107 V/m under the condition of 2 mm aluminum board with temperature 250 K. So the dielectric breakdown discharge is most likely to occur within this domain. Above all, under the condition of the material intrinsic conductivity (mainly depending on temperature) comparable to the radiation induced conductivity, temperature will play an important role in internal charging. This model for temperature-dependent conductivity and the method of 3D simulation of internal charging have great significance in both further evaluating spacecraft internal charging and implementing well protective designs.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51177173).
    [1]

    Ferguson D C 2012 IEEE Trans. Plasma Sci. 40 139

    [2]

    Lai S T 2012 IEEE Trans. Plasma Sci. 40 402

    [3]

    Huang J G, Chen D, Shi L Q 2004 Chin. J. Space Sci. 24 346 (in Chinese) [黄建国, 陈东, 师立勤 2004 空间科学学报 24 346]

    [4]

    Violet M D, Frederickson A R 1993 IEEE Trans. Nucl. Sci. 40 1512

    [5]

    Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284

    [6]

    Wintle H J 1983 Conduction Processes in Polymers, in Engineering Dielectrics Volume IIA: Electrical Properties of Solid Insulating Materials: Molecular Structure And Behaviour (Philadelphia: ASTM Special Technical Publication 783) pp 239-354

    [7]

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 62 059401]

    [8]

    Huang J G, Chen D 2004 Acta Phys. Sin. 53 961 (in Chinese) [黄建国, 陈东 2004 53 961]

    [9]

    Rodgers D J, Ryden K A, Wrenn G L, Latham P M, Sorensen J, Levy L 2000 6th Spacecraft Charging Technology Conference AFRL-VS-TR-20001578

    [10]

    Jun I, Garrett H B, Kim W 2008 IEEE Trans. Plasma Sci. 36 2467

    [11]

    Sessler G M 1992 IEEE Trans. Electr. Insul. 27 961

    [12]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 严小娟 2009 58 1205]

    [13]

    Wang S, Yi Z, Tang X J, Wu Z C, Sun Y W 2015 High Voltage Eng. 41 687 (in Chinese) [王松, 易忠, 唐小金, 武占成, 孙永卫 2015 高电压技术 41 687]

    [14]

    Tang X J, Yi Z, Meng L F, Liu Y N, Zhang C, Huang J G, Wang Z H 2013 IEEE Trans. Plasma Sci. 41 3448

    [15]

    Fowler J F 1956 Proc. R. Soc. Lond. A 236 464

    [16]

    Minow J I 2007 45th AIAA Aerospace Sciences Meeting and Exhibit Reno, USA, January 8-11, 2007 AIAA 2007-1095

    [17]

    Wrenn G L, Rodgers D J, Buehler P 2000 J. Spacecr. Rockets 37 408

    [18]

    Adamec V, Calderwood J H 1975 J. Phys. D: Appl. Phys. 8 551

    [19]

    Dennison J R, Brunson J 2008 IEEE Trans. Plasma Sci. 36 2246

    [20]

    Lai S T 2012 Fundamentals of Spacecraft Charging-Spacecraft Interactions with Space Plasma (Princeton: Princeton University Press) p151

    [21]

    Passenheim B C, Van-Lint V A J, Riddell J D, Kitterer R 1982 IEEE Trans. Nucl. Sci. NS-29 1594

    [22]

    Hartman E F, Zarick T A, Sheridan T J, Preston E F, Stringer T A 2010 Sandia National Laboratories Report SAND2010-2080

    [23]

    Han J W, Huang J G, Liu Z X, Wang S J 2005 J. Spacecraft Rockets 42 1061

  • [1]

    Ferguson D C 2012 IEEE Trans. Plasma Sci. 40 139

    [2]

    Lai S T 2012 IEEE Trans. Plasma Sci. 40 402

    [3]

    Huang J G, Chen D, Shi L Q 2004 Chin. J. Space Sci. 24 346 (in Chinese) [黄建国, 陈东, 师立勤 2004 空间科学学报 24 346]

    [4]

    Violet M D, Frederickson A R 1993 IEEE Trans. Nucl. Sci. 40 1512

    [5]

    Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284

    [6]

    Wintle H J 1983 Conduction Processes in Polymers, in Engineering Dielectrics Volume IIA: Electrical Properties of Solid Insulating Materials: Molecular Structure And Behaviour (Philadelphia: ASTM Special Technical Publication 783) pp 239-354

    [7]

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 62 059401]

    [8]

    Huang J G, Chen D 2004 Acta Phys. Sin. 53 961 (in Chinese) [黄建国, 陈东 2004 53 961]

    [9]

    Rodgers D J, Ryden K A, Wrenn G L, Latham P M, Sorensen J, Levy L 2000 6th Spacecraft Charging Technology Conference AFRL-VS-TR-20001578

    [10]

    Jun I, Garrett H B, Kim W 2008 IEEE Trans. Plasma Sci. 36 2467

    [11]

    Sessler G M 1992 IEEE Trans. Electr. Insul. 27 961

    [12]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 严小娟 2009 58 1205]

    [13]

    Wang S, Yi Z, Tang X J, Wu Z C, Sun Y W 2015 High Voltage Eng. 41 687 (in Chinese) [王松, 易忠, 唐小金, 武占成, 孙永卫 2015 高电压技术 41 687]

    [14]

    Tang X J, Yi Z, Meng L F, Liu Y N, Zhang C, Huang J G, Wang Z H 2013 IEEE Trans. Plasma Sci. 41 3448

    [15]

    Fowler J F 1956 Proc. R. Soc. Lond. A 236 464

    [16]

    Minow J I 2007 45th AIAA Aerospace Sciences Meeting and Exhibit Reno, USA, January 8-11, 2007 AIAA 2007-1095

    [17]

    Wrenn G L, Rodgers D J, Buehler P 2000 J. Spacecr. Rockets 37 408

    [18]

    Adamec V, Calderwood J H 1975 J. Phys. D: Appl. Phys. 8 551

    [19]

    Dennison J R, Brunson J 2008 IEEE Trans. Plasma Sci. 36 2246

    [20]

    Lai S T 2012 Fundamentals of Spacecraft Charging-Spacecraft Interactions with Space Plasma (Princeton: Princeton University Press) p151

    [21]

    Passenheim B C, Van-Lint V A J, Riddell J D, Kitterer R 1982 IEEE Trans. Nucl. Sci. NS-29 1594

    [22]

    Hartman E F, Zarick T A, Sheridan T J, Preston E F, Stringer T A 2010 Sandia National Laboratories Report SAND2010-2080

    [23]

    Han J W, Huang J G, Liu Z X, Wang S J 2005 J. Spacecraft Rockets 42 1061

  • [1] Wan Bing-Bing, Hu Wei-Bo, Li Xiao-Hu, Huang Wen-Feng, Chen Jian-Qiang, Tu Guo-Hua. Three-dimensional receptivity of high-speed blunt cone to different types of freestream disturbances. Acta Physica Sinica, 2024, 73(23): 234701. doi: 10.7498/aps.73.20241383
    [2] Zhang Mu-An, Wang Jin-Qing, Wu Rui, Feng Zhi, Zhan Ming-Xiu, Xu Xu, Chi Zuo-He. Three-dimensional numerical simulation of Ostwald ripening characteristics of bubbles in porous medium. Acta Physica Sinica, 2023, 72(16): 164701. doi: 10.7498/aps.72.20230695
    [3] Wang Yu-Hao, Liu Jian-Guo, Xu Liang, Liu Wen-Qing, Song Qing-li, Jin Ling, Xu Han-Yang. Quantitative analysis of accuracy of concentration inversion under different temperature and pressure. Acta Physica Sinica, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [4] Zhang Ze-Zhong, Luo Wen-Yu, Pang Zhe, Zhou Yi-Qing. Modeling of three-dimensional sound propagation through solitary internal waves. Acta Physica Sinica, 2019, 68(20): 204302. doi: 10.7498/aps.68.20190478
    [5] Yuan Qing-Yun, Sun Yong-Wei, Zhang Xi-Jun. A three-dimensional simplified simulation model based on charge conservation law for internal charging in spacecraft. Acta Physica Sinica, 2019, 68(19): 195201. doi: 10.7498/aps.68.20190631
    [6] Lu Chang-Gen, Zhu Xiao-Qing, Shen Lu-Yu. Receptivity mechanism of cross-flow instablity modes induced in three-dimensional boundary layer. Acta Physica Sinica, 2017, 66(20): 204702. doi: 10.7498/aps.66.204702
    [7] Xie Wei-Hua, Yin Si-Fan, Li Bo, Cao Yan-Ping, Feng Xi-Qiao. Three-dimensional morphological wrinkling of cylindrical soft tissues. Acta Physica Sinica, 2016, 65(18): 188704. doi: 10.7498/aps.65.188704
    [8] Shi Liang-Ma, Zhou Ming-Jian, Zhang Qing-Qing, Zhang Hong-Bin. Vortex pattern in three-dimensional mesoscopic superconducting rings. Acta Physica Sinica, 2016, 65(4): 047501. doi: 10.7498/aps.65.047501
    [9] Song Tian-Ming, Yang Jia-Min. One-dimensional simulation of radiation transport in three-dimensional cylinder. Acta Physica Sinica, 2013, 62(1): 015210. doi: 10.7498/aps.62.015210
    [10] Feng Yu-Xiao, Huang Qun-Xing, Liang Jun-Hui, Wang Fei, Yan Jian-Hua, Chi Yong. Research on simultaneous reconstruction of the temperature distribution of a 3D participating medium and its boundary. Acta Physica Sinica, 2012, 61(13): 134702. doi: 10.7498/aps.61.134702
    [11] Li Yuan-Jie, Zheng Jia-Gui, Feng Liang-Huan, Li Bing, Zeng Guang-Geng, Cai Ya-Ping, Zhang Jing-Quan, Li Wei, Lei Zhi, Wu Li-Li, Cai Wei. The effect of different preparation temperatures on the photoelectric properties of CdTe films and solar cells. Acta Physica Sinica, 2010, 59(1): 625-629. doi: 10.7498/aps.59.625
    [12] Ji Zi-Wu, Lu Yun, Chen Jin-Xiang, Mino Hirofumi, Akimoto Ryoichi, Takeyama Shojiro. Built-in electric field and a new type of charged excitons observed in modulation-doped ZnSe/BeTe type-Ⅱ quantum well. Acta Physica Sinica, 2008, 57(2): 1214-1219. doi: 10.7498/aps.57.1214
    [13] Huang Qun-Xing, Liu Dong, Wang Fei, Yan Jian-Hua, Chi Yong, Cen Ke-Fa. Study on three-dimensional flame temperature distribution reconstruction based on truncated singular value decomposition. Acta Physica Sinica, 2007, 56(11): 6742-6748. doi: 10.7498/aps.56.6742
    [14] Dong Hui-Yuan, Liu Mei, Wu Zong-Han, Wang Jing, Wang Zhen-Lin. Band structures of three-dimensional photonic crystals consisting of dielectric spheres: a plane-wave approach. Acta Physica Sinica, 2005, 54(7): 3194-3199. doi: 10.7498/aps.54.3194
    [15] Wang Chang-Qing, Jia Yu, Ma Bing-Xian, Wang Song-You, Qin Zhen, Wang Fei, Wu Le-Ke, Li Xin-Jian. Molecular dynamics simulations of various metastable structures on Si(001) at different temperatures. Acta Physica Sinica, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [16] XIONG YI-MIN, SUN ZHE, CHEN XIAN-HUI. TEMPERATURE DEPENDENCE OF RAMAN SCATTERING IN K3Ba3C60. Acta Physica Sinica, 2001, 50(2): 304-309. doi: 10.7498/aps.50.304
    [17] ZHAO HUI, WANG YONG-SHENG, HOU YAN-BING, XU ZHENG, XU XU-RONG. HIGH FIELD TRANSPORT PROPERTIES OF ZnS AT DIFFERENT TEMPERATURES. Acta Physica Sinica, 2000, 49(5): 954-958. doi: 10.7498/aps.49.954
    [18] Ju Xin, Su Yi-Xi, Wei Kun, Shi Chao-Shu, Chi Yuan-Bin. . Acta Physica Sinica, 1995, 44(9): 1449-1453. doi: 10.7498/aps.44.1449
    [19] МЕТАЛЛОГРАФИЧЕСКОЕ ИЗУЧЕНИЕ ВЛИЯНИЯ ПРЕДДЕФОРМАЦИИ ПРИ РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ НА ПЛАСТИЧЕСКУЮ ДЕФОРМАЦИЮ АЛЮМИНИЕВЫХ МОНОКРИСТАЛЛ. Acta Physica Sinica, 1957, 13(6): 443-451. doi: 10.7498/aps.13.443
    [20] CHANG TSO-MEI, SHü U-YUNG. THE IMPACT PROPERTIES OF NODULAR CAST IRON AT VARIOUS TEMPERATURES. Acta Physica Sinica, 1954, 10(4): 333-346. doi: 10.7498/aps.10.333
Metrics
  • Abstract views:  5827
  • PDF Downloads:  181
  • Cited By: 0
Publishing process
  • Received Date:  03 December 2014
  • Accepted Date:  08 January 2015
  • Published Online:  05 June 2015

/

返回文章
返回
Baidu
map