搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维燃烧介质和壁面温度的非接触联合重建研究

冯玉霄 黄群星 梁军辉 王飞 严建华 池涌

引用本文:
Citation:

三维燃烧介质和壁面温度的非接触联合重建研究

冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌

Research on simultaneous reconstruction of the temperature distribution of a 3D participating medium and its boundary

Feng Yu-Xiao, Huang Qun-Xing, Liang Jun-Hui, Wang Fei, Yan Jian-Hua, Chi Yong
PDF
导出引用
  • 温度分布在线实时测量对于燃烧过程优化和污染物控制具有重要意义, 针对以往非接触三维温度分布重建过程的耗时性问题和忽略壁面辐射的不足, 本文提出了一种新的离散重建模型, 用于三维吸收、 发射和散射性高温燃烧介质以及壁面温度的快速联合非接触测量. 该模型以四个CCD(Charge Coupled Device) 为测量传感器, 通过构建辐射逆问题求解方程, 从CCD输出的辐射投影图像重建温度分布. 介质中不同投影方向内的辐射传递过程通过离散传递法来描述, 介质的散射和壁面反射则通过离散坐标法来近似. 离散后计算局部辐射强度的病态方程通过最小二乘余量法来求解, 论文对其计算速度进行了优化. 通过非对称温度分布测量算例分析了该模型的有效性, 讨论了测量噪音、 介质和壁面辐射特性对重建精度的影响, 并与其他方法对比分析了模型的重建速度. 计算结果表明本文提出的离散模型可以有效地用于大型高温燃烧介质和壁面温度分布的联合非接触测量. 即使在有噪声的情况下, 该模型也能获得准确的测量结果, 与其他计算方法相比, 采用改进的最小二乘余量法, 能有效地提高温度分布的重建计算速度.
    In-situ and nonintrusive 3D temperature measurement is very important for combustion diagnosis and controlling of pollutants. The temperature reconstruction technique based on radiation inverse analysis has received intensive attention. In order to reduce the computation cost and take boundary temperature into consideration, a discrete method is presented for 3D temperature distribution determination for an absorbing, emitting and scattering combustion medium and its boundary by using the emission image measured by four CCD cameras. First the radiative source term is retrieved through the discrete transfer method. Then, the temperature is inferred from the blackbody intensity obtained by subtracting the media scattering and boundary reflecting contribution from the source term by the discrete ordinate approximation. The least squares minimum residual algorithm is improved to solve the ill-posed reconstruction equations. The performance of the proposed method is examined by numerical test. The effects of measurement noise and radiative properties on the reconstruction accuracy are investigated. The results show that the method proposed in this paper is capable of reproducing the temperature of the medium and its boundary accurately, even with noise. The reconstruction time cost is reduced significantly compared with those of other methods.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2009CB219802, 2011CB201500)和固体废 弃物焚烧处理项目(批准号: 2009ZX07317-003, A2009R50049)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2009CB219802 and 2011CB201500), the Sewage Sludge Incineration Projects (Grant Nos. 2009ZX07317-003, A2009R50049).
    [1]

    Siewert C E 1993 JQSRT. 50 603

    [2]
    [3]

    Li H Y, Yang C Y 1997 Int. J. Heat Mass Transfer 40 1545

    [4]

    Ozisik M N, Orlande H R B 2000 Inverse heat transfer: fundamentals and applications (New York: Taylor Francis) pp253-288

    [5]
    [6]
    [7]

    Modest M F 2003 Radiative Heat Transfer (2nd ed) (New York: Academic) pp729-739

    [8]
    [9]

    Kohse-Hinghaus K, Barlow R S 2005 Proc. Combust. Inst. 30 89

    [10]

    Sielschott H 1997 Flow Meas. Instrum. 8 191

    [11]
    [12]
    [13]

    Docquier N, Candel S 2002 Prog. Energy Combust. Sci. 28 107

    [14]
    [15]

    Ballester J, Garcia-Armingol T 2010 Prog. Energy Combust. Sci. 36 375

    [16]

    Li H Y, Ozisik M N 1992 ASME J. Heat Transfer 114 1060

    [17]
    [18]

    Li H Y, Ozisik M N 1992 JQSRT. 48 237

    [19]
    [20]
    [21]

    Li H Y 2001 JQSRT. 69 403

    [22]

    Liu L H, Tan H P, Yu Q Z 1999 Int. Commun. Heat Mass Transfer 26 239

    [23]
    [24]

    Liu L H, Tan H P, Yu Q Z 2001 Int. J. Heat Mass Transfer 44 63

    [25]
    [26]
    [27]

    Liu L H, Tan H P 2001 JQSRT. 68 559

    [28]

    Park H M, Yoo D H 2001 Int. J. Heat Mass Transfer 44 2949

    [29]
    [30]
    [31]

    Namjoo A, HosseiniSarvari S M, Behzadmehr A, Mansouri S H 2009 JQSRT. 110 491

    [32]

    Correia D P, Ferrao P, Caldeira-Pires A 2000 Proc. Combust. Inst. 28 431

    [33]
    [34]
    [35]

    Wang F, Yan J H, Cen K F, Huang Q X, Liu D, Chi Y, Ni M J 2010 Fuel 89 202

    [36]
    [37]

    Zhou H C, Han S D, Sheng F, Zheng C G 2002 JQSRT. 72 361

    [38]

    Zhou H C, Lou C, Cheng Q, Jian Z W 2005 Proc. Combust. Inst. 30 1699

    [39]
    [40]
    [41]

    Lou C, Li W H, Zhou H C, Salinas C T 2011 Int. J. Heat Mass Transfer 54 1

    [42]

    Huang Z F, Cheng Q, Zhou H C 2009 JQSRT. 110 1072

    [43]
    [44]

    Liu D, Wang F, Yan J H, Huang Q X, Chi Y, Cen K F 2008 Int. J. Heat Mass Transfer 51 3434

    [45]
    [46]
    [47]

    Liu D, Wang F, Huang Q X, Yan J H, Chi Y, Cen K F 2008 Acta Phys. Sin. 57 4812(in Chinese) [刘 冬, 王飞, 黄群星, 严建华, 池 涌, 岑可法 2008 57 4812]

    [48]

    Liu D, Wang F, Cen K F, Yan J H, Huang Q X, Chi Y 2008 Opt. Lett. 33 422

    [49]
    [50]

    Liu D, Yan J H, Cen K F 2011 Int. J. Heat Mass Transfer 54 1684

    [51]
    [52]
    [53]

    Lockwood F C, Shah N G 1981 Symposium (International) on Combustion 18 1405

    [54]

    Coelho P J, Carvalho M G 1997 ASME J. Heat Transfer 119 118

    [55]
    [56]

    Ayranci I, Vaillon R, Selcuk N 2007 JQSRT. 104 266

    [57]
    [58]

    Snelling D R, Thomson K A , Smallwood G J, Gulder O L, Weckman E J, Fraser R A 2002 AIAA Journal 40 1789

    [59]
    [60]

    Fiveland W A 1987 ASME J. Heat Transfer 109 809

    [61]
    [62]
    [63]

    Chang H, Charalampopoulos T T 1990 P. Roy. Soc. A-Math. Phy. 430 577

    [64]
    [65]

    Lathrop K D, Carlson B G 1965 Discrete-Ordinates Angular Quadrature of the Neutron Transport Equation (Los Alamos Scientific Laboratory of the University of California: California)

    [66]
    [67]

    Hansen P C 2007 Numer. Algorithms 46 189

    [68]
    [69]

    Fong D C L, Saunders M A 2011 arXiv: 1006.0758v2 [cs.MS]

    [70]

    Paige C C, Saunders M A 1982 AMC Trans. Math. Softw. 8 195

    [71]
    [72]

    Huang Q X, Liu D, Wang F, Yan J H, Chi Y, Cen K F 2008 Acta Phys. Sin. 57 7928(in Chinese) [黄群星, 刘冬, 王 飞, 严建华, 池 涌, 岑可法 2008 57 7928]

    [73]
    [74]

    Liu D, Wang F, Huang Q X, Yan J H, Chi Y, Cen K F 2008 Chin. Phys. B 17 1312

    [75]
    [76]
    [77]

    Groetsch C W 1984 The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind (Botson: Pitman)

    [78]

    Huang Q X, Liu D, Wang F, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 6742(in Chinese) [黄群星, 刘 冬, 王 飞, 严建华, 池涌, 岑可法 2007 56 6742]

    [79]
  • [1]

    Siewert C E 1993 JQSRT. 50 603

    [2]
    [3]

    Li H Y, Yang C Y 1997 Int. J. Heat Mass Transfer 40 1545

    [4]

    Ozisik M N, Orlande H R B 2000 Inverse heat transfer: fundamentals and applications (New York: Taylor Francis) pp253-288

    [5]
    [6]
    [7]

    Modest M F 2003 Radiative Heat Transfer (2nd ed) (New York: Academic) pp729-739

    [8]
    [9]

    Kohse-Hinghaus K, Barlow R S 2005 Proc. Combust. Inst. 30 89

    [10]

    Sielschott H 1997 Flow Meas. Instrum. 8 191

    [11]
    [12]
    [13]

    Docquier N, Candel S 2002 Prog. Energy Combust. Sci. 28 107

    [14]
    [15]

    Ballester J, Garcia-Armingol T 2010 Prog. Energy Combust. Sci. 36 375

    [16]

    Li H Y, Ozisik M N 1992 ASME J. Heat Transfer 114 1060

    [17]
    [18]

    Li H Y, Ozisik M N 1992 JQSRT. 48 237

    [19]
    [20]
    [21]

    Li H Y 2001 JQSRT. 69 403

    [22]

    Liu L H, Tan H P, Yu Q Z 1999 Int. Commun. Heat Mass Transfer 26 239

    [23]
    [24]

    Liu L H, Tan H P, Yu Q Z 2001 Int. J. Heat Mass Transfer 44 63

    [25]
    [26]
    [27]

    Liu L H, Tan H P 2001 JQSRT. 68 559

    [28]

    Park H M, Yoo D H 2001 Int. J. Heat Mass Transfer 44 2949

    [29]
    [30]
    [31]

    Namjoo A, HosseiniSarvari S M, Behzadmehr A, Mansouri S H 2009 JQSRT. 110 491

    [32]

    Correia D P, Ferrao P, Caldeira-Pires A 2000 Proc. Combust. Inst. 28 431

    [33]
    [34]
    [35]

    Wang F, Yan J H, Cen K F, Huang Q X, Liu D, Chi Y, Ni M J 2010 Fuel 89 202

    [36]
    [37]

    Zhou H C, Han S D, Sheng F, Zheng C G 2002 JQSRT. 72 361

    [38]

    Zhou H C, Lou C, Cheng Q, Jian Z W 2005 Proc. Combust. Inst. 30 1699

    [39]
    [40]
    [41]

    Lou C, Li W H, Zhou H C, Salinas C T 2011 Int. J. Heat Mass Transfer 54 1

    [42]

    Huang Z F, Cheng Q, Zhou H C 2009 JQSRT. 110 1072

    [43]
    [44]

    Liu D, Wang F, Yan J H, Huang Q X, Chi Y, Cen K F 2008 Int. J. Heat Mass Transfer 51 3434

    [45]
    [46]
    [47]

    Liu D, Wang F, Huang Q X, Yan J H, Chi Y, Cen K F 2008 Acta Phys. Sin. 57 4812(in Chinese) [刘 冬, 王飞, 黄群星, 严建华, 池 涌, 岑可法 2008 57 4812]

    [48]

    Liu D, Wang F, Cen K F, Yan J H, Huang Q X, Chi Y 2008 Opt. Lett. 33 422

    [49]
    [50]

    Liu D, Yan J H, Cen K F 2011 Int. J. Heat Mass Transfer 54 1684

    [51]
    [52]
    [53]

    Lockwood F C, Shah N G 1981 Symposium (International) on Combustion 18 1405

    [54]

    Coelho P J, Carvalho M G 1997 ASME J. Heat Transfer 119 118

    [55]
    [56]

    Ayranci I, Vaillon R, Selcuk N 2007 JQSRT. 104 266

    [57]
    [58]

    Snelling D R, Thomson K A , Smallwood G J, Gulder O L, Weckman E J, Fraser R A 2002 AIAA Journal 40 1789

    [59]
    [60]

    Fiveland W A 1987 ASME J. Heat Transfer 109 809

    [61]
    [62]
    [63]

    Chang H, Charalampopoulos T T 1990 P. Roy. Soc. A-Math. Phy. 430 577

    [64]
    [65]

    Lathrop K D, Carlson B G 1965 Discrete-Ordinates Angular Quadrature of the Neutron Transport Equation (Los Alamos Scientific Laboratory of the University of California: California)

    [66]
    [67]

    Hansen P C 2007 Numer. Algorithms 46 189

    [68]
    [69]

    Fong D C L, Saunders M A 2011 arXiv: 1006.0758v2 [cs.MS]

    [70]

    Paige C C, Saunders M A 1982 AMC Trans. Math. Softw. 8 195

    [71]
    [72]

    Huang Q X, Liu D, Wang F, Yan J H, Chi Y, Cen K F 2008 Acta Phys. Sin. 57 7928(in Chinese) [黄群星, 刘冬, 王 飞, 严建华, 池 涌, 岑可法 2008 57 7928]

    [73]
    [74]

    Liu D, Wang F, Huang Q X, Yan J H, Chi Y, Cen K F 2008 Chin. Phys. B 17 1312

    [75]
    [76]
    [77]

    Groetsch C W 1984 The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind (Botson: Pitman)

    [78]

    Huang Q X, Liu D, Wang F, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 6742(in Chinese) [黄群星, 刘 冬, 王 飞, 严建华, 池涌, 岑可法 2007 56 6742]

    [79]
  • [1] 康哲铭, 纪金龙, 康品春, 刘君健, 吕艺晖, 郭鹭清. 基于伪逆法的数字温度计温度修正曲线重建算法.  , 2024, 73(19): 190701. doi: 10.7498/aps.73.20241104
    [2] 孙佳坤, 林传栋, 苏咸利, 谭志城, 陈亚楼, 明平剑. 离散Boltzmann方程的求解: 基于有限体积法.  , 2024, 73(11): 110504. doi: 10.7498/aps.73.20231984
    [3] 楚化强, 冯艳, 曹文健, 任飞, 顾明言. 灰气体加权和辐射模型综合评估及分析.  , 2017, 66(9): 094207. doi: 10.7498/aps.66.094207
    [4] 章孝顺, 章定国, 陈思佳, 洪嘉振. 基于绝对节点坐标法的大变形柔性梁几种动力学模型研究.  , 2016, 65(9): 094501. doi: 10.7498/aps.65.094501
    [5] 张琪, 张然, 宋海明. 美式回望期权定价问题的有限体积法.  , 2015, 64(7): 070202. doi: 10.7498/aps.64.070202
    [6] 焦杨, 章新喜, 孔凡成, 刘海顺. 湿颗粒聚团碰撞解聚过程的离散元法模拟.  , 2015, 64(15): 154501. doi: 10.7498/aps.64.154501
    [7] 李树忱, 平洋, 李术才, 寇强, 马腾飞, 冯丙阳. 基于流形覆盖的岩体宏细观破裂的颗粒离散元法.  , 2014, 63(5): 050202. doi: 10.7498/aps.63.050202
    [8] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究.  , 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [9] 李一丁, 张鹏飞, 张辉, 于淼. 弯轨Čerenkov辐射计算中的稳相法.  , 2013, 62(10): 104103. doi: 10.7498/aps.62.104103
    [10] 韩祥临, 欧阳成, 宋涛, 戴孙圣. 交通拥堵相变问题的同伦分析法.  , 2013, 62(17): 170203. doi: 10.7498/aps.62.170203
    [11] 陈应天, 何祚庥. 强辐射催化法提纯多晶硅.  , 2011, 60(7): 078104. doi: 10.7498/aps.60.078104
    [12] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究.  , 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [13] 陈 丽, 程玉民. 瞬态热传导问题的复变量重构核粒子法.  , 2008, 57(10): 6047-6055. doi: 10.7498/aps.57.6047
    [14] 刘 涵, 刘 丁, 任海鹏. 基于最小二乘支持向量机的混沌控制.  , 2005, 54(9): 4019-4025. doi: 10.7498/aps.54.4019
    [15] 刘 丁, 钱富才, 任海鹏, 孔志强. 离散混沌系统的最小能量控制.  , 2004, 53(7): 2074-2079. doi: 10.7498/aps.53.2074
    [16] 陈菊芳, 程 丽, 刘 颖, 彭建华. 延迟变量反馈法控制离散混沌系统的电路实验.  , 2003, 52(1): 18-24. doi: 10.7498/aps.52.18
    [17] 马大猷. 微扰法求解非线性驻波问题.  , 1996, 45(5): 796-800. doi: 10.7498/aps.45.796
    [18] 陈瑞熊. 逆轨道分析法确定一维映象的拓扑熵.  , 1989, 38(9): 1501-1505. doi: 10.7498/aps.38.1501
    [19] 吴振森, 王一平. 直接模拟法和统计估计法研究平面波通过离散随机介质的散射.  , 1988, 37(4): 698-704. doi: 10.7498/aps.37.698
    [20] 范海福, 郑启泰. 用直接法处理Patterson法中的多解问题.  , 1978, 27(2): 169-174. doi: 10.7498/aps.27.169
计量
  • 文章访问数:  7069
  • PDF下载量:  13924
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-23
  • 修回日期:  2011-11-23
  • 刊出日期:  2012-07-05

/

返回文章
返回
Baidu
map