-
Based on a novel multiplexing system of two distinct chaotic signals, the corresponding modified Lang-Kobayashi rate equations are established. The numerical investigations into the performance of chaos synchronization are carried out. In more detail, the influences of single-parameter mismatch, multi-parameter mismatch, feedback-strength discrepancy, and frequency detuning between the two master semiconductor lasers (MLs) on synchronization performance are investigated, respectively. Moreover, the security and spectrum characteristics are addressed briefly in this work. The numerical simulations show that by adopting parameter mismatch, i.e., choosing appropriate system parameters of the two MLs, the correlation between the two MLs becomes extremely low, while the matched master-slave laser pairs can achieve high-quality chaos synchronization, indicating that the condition of optical chaos multiplexing is satisfied; the parameter mismatch between the MLs has a significant influence on their synchronization quality, but no obvious influence on their synchronization quality of the matched master-slave laser pairs, which further demonstrates the validity and feasibility of the chaos multiplexing scheme. More importantly, in this paper, the multiplexed chaotic signals in the time and frequency domains in terms of autocorrelation function and power spectrum are analyzed, demonstrating that the present system could provide higher security than the single external-cavity semiconductor laser.
-
Keywords:
- chaos multiplex /
- active-passive decomposition /
- parameter mismatch /
- chaos synchronization
[1] Heil T, Mulet J, Fischer I, Mirasso C R, Peil M, Colet P 2002 IEEE J. Quantum Electron. 38 1162
[2] Rogister F, Locquet A, Pieroux D, Sciamanna M, Deparis O, Megret P, Blondel M 2001 Opt. Lett. 26 1486
[3] Pisarchik A N, Ruiz-Oliveras F R 2010 IEEE J. Quantum Electron. 46 279
[4] Paul J, Sivaprakasam S, Shore K A 2004 J. Opt. Soc. Am. B 21 514
[5] Annovazzi L V, Donati S, Scire A 1996 IEEE J. Quantum Electron. 32 953
[6] Argyris A, Syvrids D, Larger L, Annovazzi V, Colet P, Fischer P, Garcia O J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[7] Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101
[8] Li X F, Pan W, Luo B, Ma D 2006 IEEE. J. Quantum Electron. 42 953
[9] Lin F Y, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 991
[10] Wang A B, Wang Y C 2010 Sci. China: Inform. Sci. 53 398
[11] Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 1 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子进展 50 1]
[12] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728
[13] Zhang J Z, Wang Y C, Liu M, Xue L G, Li P, Wang A B, Zhang M J 2012 Opt. Express 20 7496
[14] Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072
[15] Hu H P, Su W, Liu L F, Yu Z L 2014 Phys. Lett. A 378 184
[16] Bogris A, Kanakidis D, Argyris A, Syvridis D 2004 IEEE J. Quantum Electron. 40 1326
[17] Yan S L 2012 Commun. Nonlinear Sci. 17 2896
[18] Liu Y R, Wu Z M, Wu J G, Li P, Xia G Q 2012 Acta Phys. Sin. 61 024203 (in Chinese) [刘宇然, 吴正茂, 吴加贵, 李萍, 夏光琼 2012 61 024203]
[19] Deng W, Xia G Q, Wu Z M 2013 Acta Phys. Sin. 62 164209 (in Chinese) [邓伟, 夏光琼, 吴正茂 2013 62 164209]
[20] Zhang W L, Pan W, Luo B, Zou X H, Wang M Y 2008 IEEE Photon. Technol. Lett. 20 712
[21] Zhang J Z, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese) [张建忠, 王安帮, 王云才 2009 58 3793]
[22] Rontani D, Locquet A, Sciamanna M, Citrin D S 2010 Opt. Lett. 35 2016
[23] Zhao Q C, Yin H X 2013 Opt. Laser Technol. 47 208
[24] Zhao Q C, Yin H X, Chen X L 2012 Appl. Opt. 51 5585
[25] Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
[26] Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960
[27] Lee M W, Rees P, Shore K A, Ortin S, Pesquera L, Valle A 2005 IEE Proc. Optoelectron. 152 97
[28] Wu J Q, Xia G Q, Wu Z M 2009 Opt. Express 17 20124
[29] Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y, Mu P H 2012 IEEE J. Quantum Electron. 48 1339
[30] Li N Q, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y 2013 IEEE J. Sel. Topics Quantum Electron. 19 0600109
[31] Wu J Q, Wu Z M, Tang X, Lin X D, Deng T, Xia G Q, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 759
-
[1] Heil T, Mulet J, Fischer I, Mirasso C R, Peil M, Colet P 2002 IEEE J. Quantum Electron. 38 1162
[2] Rogister F, Locquet A, Pieroux D, Sciamanna M, Deparis O, Megret P, Blondel M 2001 Opt. Lett. 26 1486
[3] Pisarchik A N, Ruiz-Oliveras F R 2010 IEEE J. Quantum Electron. 46 279
[4] Paul J, Sivaprakasam S, Shore K A 2004 J. Opt. Soc. Am. B 21 514
[5] Annovazzi L V, Donati S, Scire A 1996 IEEE J. Quantum Electron. 32 953
[6] Argyris A, Syvrids D, Larger L, Annovazzi V, Colet P, Fischer P, Garcia O J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[7] Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101
[8] Li X F, Pan W, Luo B, Ma D 2006 IEEE. J. Quantum Electron. 42 953
[9] Lin F Y, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 991
[10] Wang A B, Wang Y C 2010 Sci. China: Inform. Sci. 53 398
[11] Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 1 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子进展 50 1]
[12] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728
[13] Zhang J Z, Wang Y C, Liu M, Xue L G, Li P, Wang A B, Zhang M J 2012 Opt. Express 20 7496
[14] Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072
[15] Hu H P, Su W, Liu L F, Yu Z L 2014 Phys. Lett. A 378 184
[16] Bogris A, Kanakidis D, Argyris A, Syvridis D 2004 IEEE J. Quantum Electron. 40 1326
[17] Yan S L 2012 Commun. Nonlinear Sci. 17 2896
[18] Liu Y R, Wu Z M, Wu J G, Li P, Xia G Q 2012 Acta Phys. Sin. 61 024203 (in Chinese) [刘宇然, 吴正茂, 吴加贵, 李萍, 夏光琼 2012 61 024203]
[19] Deng W, Xia G Q, Wu Z M 2013 Acta Phys. Sin. 62 164209 (in Chinese) [邓伟, 夏光琼, 吴正茂 2013 62 164209]
[20] Zhang W L, Pan W, Luo B, Zou X H, Wang M Y 2008 IEEE Photon. Technol. Lett. 20 712
[21] Zhang J Z, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese) [张建忠, 王安帮, 王云才 2009 58 3793]
[22] Rontani D, Locquet A, Sciamanna M, Citrin D S 2010 Opt. Lett. 35 2016
[23] Zhao Q C, Yin H X 2013 Opt. Laser Technol. 47 208
[24] Zhao Q C, Yin H X, Chen X L 2012 Appl. Opt. 51 5585
[25] Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
[26] Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960
[27] Lee M W, Rees P, Shore K A, Ortin S, Pesquera L, Valle A 2005 IEE Proc. Optoelectron. 152 97
[28] Wu J Q, Xia G Q, Wu Z M 2009 Opt. Express 17 20124
[29] Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y, Mu P H 2012 IEEE J. Quantum Electron. 48 1339
[30] Li N Q, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y 2013 IEEE J. Sel. Topics Quantum Electron. 19 0600109
[31] Wu J Q, Wu Z M, Tang X, Lin X D, Deng T, Xia G Q, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 759
Catalog
Metrics
- Abstract views: 6214
- PDF Downloads: 361
- Cited By: 0