-
The simulation is one of the important methods to evaluate the internal charging risk in spacecraft. In this paper, based on the charge conservation law, a three-dimensional calculation model of the potential and electric field of internal charging is established, and the one-dimensional steady state and transient solution algorithm and the two-dimensional and three-dimensional solution scheme of the model are given. An interative algorithm is designed to solve the required conductivity and the electric field intensity, and the convergence of the interative algorithm is analyzed. Using the finite element algorithm and the local mesh refinement, the model has the advantage of easily investigating the electric field distortion at key points. Comparing with the existing radiation-induced conductivity (RIC) model, due to the fact that the internal charging time constant is much higher than the charge capture time and the trap density in the dielectric is much higher than the charge density after the charge balance, the free charge will be rapidly converted into the captured charge. Therefore, it is unnecessary to consider the charge capture mechanism in the RIC model. The CCL model can be used to evaluate the internal charging and has higher computational efficiency. Comparing with the experimental data, the correctness of the three-dimensional calculation model is verified. It provides a means to evaluate the dielectric internal charging in spacecraft.
-
Keywords:
- internal charging /
- spacecraft /
- electric field distortion /
- radiation induced conductivity (RIC) model
[1] Wrenn G L 1995 J. Spacecraft Rockets 32 514Google Scholar
[2] Fredrickson A R 1996 IEEE Trans. Nucl. Sci. 43 426Google Scholar
[3] Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284Google Scholar
[4] Han J, Huang J, Liu Z, Wang S 2005 J. Spacecraft Rockets 42 1061Google Scholar
[5] Jun I, Garrett H B, Kim W 2008 IEEE Trans. Plasma Sci. 36 2467Google Scholar
[6] Sorensen J D, Rodgers J 2000 IEEE Trans. Plasma Sci. 47 491
[7] Weber K H 1964 Nucl. Instrum. Methods 25 261
[8] Tabata T, Andreo P, Shinoda K 1998 Radiat. Phys. Chem. 53 205Google Scholar
[9] Tabataa T, Andreob P, Shinodac K 1999 Radia. Phys. Chem. 54 11Google Scholar
[10] 焦维新, 濮祖荫 2000 中国科学(A辑) 30 136
Jiao W X, Pu Z Y 2000 Science in China (Series A)
30 136 [11] 全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2013 62 059401Google Scholar
Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2013 Acta Phys. Sin. 62 059401Google Scholar
[12] 孙建军, 张振龙, 梁伟, 岳赟, 杨涛, 韩建伟 2014 航天器环境工程 31 173Google Scholar
Sun J J, Zhang Z L, Liang W, Yue Y, Yang T, Han J W 2014 Spacecraft Environment Engineering 31 173Google Scholar
[13] 全荣辉, 韩建伟, 黄建国, 张振龙 2007 56 6642Google Scholar
Quan R H, Han J W, Huang J G, Zhang Z L 2007 Acta Phys. Sin. 56 6642Google Scholar
[14] 黄建国, 陈东 2004 53 961Google Scholar
Huang J G, Chen D 2004 Acta Phys. Sin. 53 961Google Scholar
[15] 黄建国, 陈东 2004 地球 47 442
Huang J G, Chen D 2004 Chin. J. Geophys. 47 442
[16] 乌江, 白婧婧, 沈宾, 郑晓泉 2010 中国空间科学技术 49
Wu J, Bai J J, Shen B, Zheng X Q 2010 Chinese Space Science and Technology 49
[17] 秦晓刚, 贺德衍, 王骥 2009 58 684Google Scholar
Qing X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684Google Scholar
[18] 易忠, 王松, 唐小金, 武占成, 张超 2015 64 125201Google Scholar
Yi Z, Wang S, Tang X J, Wu Z C, Zhang C 2015 Acta Phys. Sin. 64 125201Google Scholar
[19] 王松, 易忠, 唐小金, 武占成, 孙永卫 2015 高电压技术 41 687
Wang S, Yi Z, Tang X J, Wu Z C, Sun Y W 2015 High Voltage Engineering 41 687
[20] 秦晓刚 2010 博士学位论文(兰州: 兰州大学)
Qing X G 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)
[21] 张振龙, 全荣辉, 韩建伟, 黄建国 2010 原子能科学技术 44 538
Zhang Z L, Quan R H, Han J W, Huang J G 2010 Atomatic Energy Science and Technology 44 538
[22] 王松, 唐小金, 易忠, 武占成, 孙永卫 2016 原子能科学技术 50 1537Google Scholar
Wang S, Tang X J, Yi Z, Wu Z C, Sun Y W 2016 Atomatic Energy Science and Technology 50 1537Google Scholar
[23] 周庆2013 硕士学位论文(长春: 吉林大学)
Zhou Q 2013 M.S. Dissertation [Changchun: Jilin University) (in Chinese)
[24] Adamec V, Calderwood J H 1975 J. Phys. D: Appl. Phys. 8 551Google Scholar
[25] 原青云, 王松 2018 67 195201Google Scholar
Yuan Q Y, Wang S 2018 Acta Phys. Sin. 67 195201Google Scholar
[26] Sessler G M, Figueiredo M T, Leal Ferreira G F 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192
[27] 苏京, 张丽新, 刘刚, 周博, 潘阳阳, 曹康丽 2018 上海航天 35 74
Su J, Zhang L X, Liu G, Zhou B, Pan Y Y, Cao K L 2018 Aero-space Shanghai 35 74
[28] Sessler G M 1992 IEEE Trans. Dielectr. Electr. Insul. 27 961Google Scholar
-
表 1 CCL模型与RIC模型对比分析
Table 1. Comparison of CCL model and RIC model.
类别 充电机理 数学表达式 边界条件 是否便于三维计算 内带电计算效果 CCL 电荷守恒 一元偏微分方程 清晰 是 一定条件下充电结果相同 RIC 电荷守恒与电荷俘获机制 三元偏微分方程组 较难设定 否 -
[1] Wrenn G L 1995 J. Spacecraft Rockets 32 514Google Scholar
[2] Fredrickson A R 1996 IEEE Trans. Nucl. Sci. 43 426Google Scholar
[3] Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284Google Scholar
[4] Han J, Huang J, Liu Z, Wang S 2005 J. Spacecraft Rockets 42 1061Google Scholar
[5] Jun I, Garrett H B, Kim W 2008 IEEE Trans. Plasma Sci. 36 2467Google Scholar
[6] Sorensen J D, Rodgers J 2000 IEEE Trans. Plasma Sci. 47 491
[7] Weber K H 1964 Nucl. Instrum. Methods 25 261
[8] Tabata T, Andreo P, Shinoda K 1998 Radiat. Phys. Chem. 53 205Google Scholar
[9] Tabataa T, Andreob P, Shinodac K 1999 Radia. Phys. Chem. 54 11Google Scholar
[10] 焦维新, 濮祖荫 2000 中国科学(A辑) 30 136
Jiao W X, Pu Z Y 2000 Science in China (Series A)
30 136 [11] 全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2013 62 059401Google Scholar
Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2013 Acta Phys. Sin. 62 059401Google Scholar
[12] 孙建军, 张振龙, 梁伟, 岳赟, 杨涛, 韩建伟 2014 航天器环境工程 31 173Google Scholar
Sun J J, Zhang Z L, Liang W, Yue Y, Yang T, Han J W 2014 Spacecraft Environment Engineering 31 173Google Scholar
[13] 全荣辉, 韩建伟, 黄建国, 张振龙 2007 56 6642Google Scholar
Quan R H, Han J W, Huang J G, Zhang Z L 2007 Acta Phys. Sin. 56 6642Google Scholar
[14] 黄建国, 陈东 2004 53 961Google Scholar
Huang J G, Chen D 2004 Acta Phys. Sin. 53 961Google Scholar
[15] 黄建国, 陈东 2004 地球 47 442
Huang J G, Chen D 2004 Chin. J. Geophys. 47 442
[16] 乌江, 白婧婧, 沈宾, 郑晓泉 2010 中国空间科学技术 49
Wu J, Bai J J, Shen B, Zheng X Q 2010 Chinese Space Science and Technology 49
[17] 秦晓刚, 贺德衍, 王骥 2009 58 684Google Scholar
Qing X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684Google Scholar
[18] 易忠, 王松, 唐小金, 武占成, 张超 2015 64 125201Google Scholar
Yi Z, Wang S, Tang X J, Wu Z C, Zhang C 2015 Acta Phys. Sin. 64 125201Google Scholar
[19] 王松, 易忠, 唐小金, 武占成, 孙永卫 2015 高电压技术 41 687
Wang S, Yi Z, Tang X J, Wu Z C, Sun Y W 2015 High Voltage Engineering 41 687
[20] 秦晓刚 2010 博士学位论文(兰州: 兰州大学)
Qing X G 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)
[21] 张振龙, 全荣辉, 韩建伟, 黄建国 2010 原子能科学技术 44 538
Zhang Z L, Quan R H, Han J W, Huang J G 2010 Atomatic Energy Science and Technology 44 538
[22] 王松, 唐小金, 易忠, 武占成, 孙永卫 2016 原子能科学技术 50 1537Google Scholar
Wang S, Tang X J, Yi Z, Wu Z C, Sun Y W 2016 Atomatic Energy Science and Technology 50 1537Google Scholar
[23] 周庆2013 硕士学位论文(长春: 吉林大学)
Zhou Q 2013 M.S. Dissertation [Changchun: Jilin University) (in Chinese)
[24] Adamec V, Calderwood J H 1975 J. Phys. D: Appl. Phys. 8 551Google Scholar
[25] 原青云, 王松 2018 67 195201Google Scholar
Yuan Q Y, Wang S 2018 Acta Phys. Sin. 67 195201Google Scholar
[26] Sessler G M, Figueiredo M T, Leal Ferreira G F 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192
[27] 苏京, 张丽新, 刘刚, 周博, 潘阳阳, 曹康丽 2018 上海航天 35 74
Su J, Zhang L X, Liu G, Zhou B, Pan Y Y, Cao K L 2018 Aero-space Shanghai 35 74
[28] Sessler G M 1992 IEEE Trans. Dielectr. Electr. Insul. 27 961Google Scholar
计量
- 文章访问数: 9662
- PDF下载量: 53
- 被引次数: 0