Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vortex pattern in three-dimensional mesoscopic superconducting rings

Shi Liang-Ma Zhou Ming-Jian Zhang Qing-Qing Zhang Hong-Bin

Citation:

Vortex pattern in three-dimensional mesoscopic superconducting rings

Shi Liang-Ma, Zhou Ming-Jian, Zhang Qing-Qing, Zhang Hong-Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Vortex structures in a mesoscopic a superconducting ring, which is in the magnetic field generated by a circular electric current, are investigated based on the phenomenological Ginzburg-Landau (G-L) theory. Due to the axial symmetry of the system, the three-dimensional problem is reduced to a two-dimensional problem. We can mesh a two-dimensional sample into grids, and discretize the first G-L equation by using the finite-difference method. Then the eigenvalues and eigenfunctions will be evaluated numerically by solving the discrete equations. With the eigenvalues and eigenfunctions we further obtain the minimum free energy of the system and the corresponding superconducting wave function. We discuss the influences of the ring size and magnetic field distribution on two kinds of the vortex structures: giant vortex state (GVS) and multivortex state (MVS). Calculations show: 1) the GVS with axial symmetric wave function exists only in a small size superconducting ring, as the GVS is a state of single vortex line that only goes through the hole at the center of the superconducting ring and carries several magnetic flux quanta with it; 2) with the increase of the ring size, the diamagnetism of superconducting ring becomes stronger, and the critical magnetic field value of a giant vortex state increases, and the maximal number of giant vortexes that the superconducting ring can accommodate is also growing; furthermore, the entrance of a flux line will cause fluctuations of critical field values; 3) when the superconducting ring size is large enough, a GVS splits into a number of MVS. The MVS is an excited state and the GVS is mostly a ground state; 4) the free energy of the system changes with the magnetic field distribution, the magnetic field provided by a central small current loop can pass through the superconducting ring easily, and produce multivortices whose formations are diverse; if the magnetic field runs parallel to the plane of the superconducting ring, it is difficult to pass through the superconducting ring and form multivortices; 5) the vortex lines are naturally bent with the magnetic field lines and can pass through the same horizontal plane twice, so that one of the two vortex states seems to be an antivortex state; generally, the magnetic field lines can go through the hole of a superconducting ring easily but can hardly penetrate through the body of a superconducting ring, the structure of multivortices is similar to that of the magnetic field distribution in a superconducting ring. We also obtain a vortex structure with coexistences of giant vortex and multivortices. This study is of significance for the application of superconducting nanomaterials.
      Corresponding author: Shi Liang-Ma, slm428@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11742063) and the Province Key Program of Science Research of Anhui High School, China (Grant No. KJ2012A203).
    [1]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [2]

    Abrikosov A A 1957 Sov. Phys. JETP 5 1174

    [3]

    Yeoh W K, Gault B, Cui X Y, Zhu C, Moody M P, Li L, Zheng R K, Li W X, Wang X L, Dou S X, Sun G L, Lin C T, Ringer S P 2011 Phys. Rev. Lett. 106 247002

    [4]

    Geim A K, Dubonos S V, Grigorieva I V, Novoselov K S, Peeters F M, Schweigert V A 2000 Nature 407 55

    [5]

    Kanda A, Baelus B J, Peeters F M, Kadowaki K, Ootuka Y 2004 Phys. Rev. Lett. 93 257002

    [6]

    Grigorieva I V, Escoffier W, Richardson J, Vinnikov L Y, Dubonos S, Oboznov V 2006 Phys. Rev. Lett. 96 077005

    [7]

    Grigorieva I V, Escoffier W, Misko V R, Baelus B J, Peeters F M, Vinnikov L Y, Dubonos S V 2007 Phys. Rev. Lett. 99 147003

    [8]

    Singha Deo P, Schweigert V A, Peeters F M, Geim A K 1997 Phys. Rev. Lett. 79 4653

    [9]

    Baelus B J, Sun D, Peeters F M 2007 Phys. Rev. B 75 174523

    [10]

    Gillis S, Jykk J, MiloevićM V 2014 Phys. Rev. B 89 024512

    [11]

    Kim S, Burkardt J, Gunzburger M, Peterson J 2007 Phys. Rev. B 76 024509

    [12]

    de Romaguera A R C, Doria M M, Peeters F M 2007 Phys. Rev. B 76 020505

    [13]

    Misko V R, Fomin V M, Devreese J T, Moshchalkov V V 2003 Phys. Rev. Lett. 90 147003

    [14]

    Doria M M, de C Romaguera A R, Peeters F M 2007 Phys. Rev. B 75 064505

    [15]

    Marmorkos I K, Matulis A, Peeters F M 1996 Phys. Rev. B 53 2677

    [16]

    Carapella G, Sabatino P, Gombos M 2015 Physica C 515 7

    [17]

    Baelus B J, Peeters F M, Schweigert V A 2000 Phys Rev. B 61 9734

    [18]

    Lu-Dac M, Kabanov V V 2010 Physica C 470 942

    [19]

    Peng L, Wei Z J, Liu Y S, Fang Y F, Cai C B 2014 J. Supercond. Nov. Magn. 27 1217

    [20]

    Pan J Y, Zhang C, He F, Feng Q R 2013 Acta Phys. Sin. 62 127401 (in Chinese) [潘杰云, 张辰, 何法, 冯庆荣 2013 62 127401]

    [21]

    Ding F Z, Gu H W, Zhang T, Wang H Y, Qu F, Peng X Y, Zhou W W 2013 Acta Phys. Sin. 62 137401 (in Chinese) [丁发柱, 古宏伟, 张腾, 王洪艳, 屈飞, 彭星煜, 周微微 2013 62 137401]

    [22]

    Wang M, Ou Y B, Li F S, Zhang W H, Tang C J, Wang L L, Xue Q K, Ma X C 2014 Acta Phys. Sin. 63 027401 (in Chinese) [王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村 2014 63 027401]

    [23]

    Zhang Y H, Li Y Z 1992 Superconducting Physics (Hefei: University of Science and Technology of China Press) p85 (in Chinese) [张裕恒, 李玉芝 1992 超导物理 (合肥: 中国科学技术大学出版社) 第85页]

    [24]

    Jackson J D (translated by Zhu P Y) 1978 Classical Electrodynamics (Beijing: People's Education Press) pp195-196 (in Chinese) [杰克逊J D 著(朱培豫 译) 1978经典电动力学(北京: 人民教育出版社)第195196页]

  • [1]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [2]

    Abrikosov A A 1957 Sov. Phys. JETP 5 1174

    [3]

    Yeoh W K, Gault B, Cui X Y, Zhu C, Moody M P, Li L, Zheng R K, Li W X, Wang X L, Dou S X, Sun G L, Lin C T, Ringer S P 2011 Phys. Rev. Lett. 106 247002

    [4]

    Geim A K, Dubonos S V, Grigorieva I V, Novoselov K S, Peeters F M, Schweigert V A 2000 Nature 407 55

    [5]

    Kanda A, Baelus B J, Peeters F M, Kadowaki K, Ootuka Y 2004 Phys. Rev. Lett. 93 257002

    [6]

    Grigorieva I V, Escoffier W, Richardson J, Vinnikov L Y, Dubonos S, Oboznov V 2006 Phys. Rev. Lett. 96 077005

    [7]

    Grigorieva I V, Escoffier W, Misko V R, Baelus B J, Peeters F M, Vinnikov L Y, Dubonos S V 2007 Phys. Rev. Lett. 99 147003

    [8]

    Singha Deo P, Schweigert V A, Peeters F M, Geim A K 1997 Phys. Rev. Lett. 79 4653

    [9]

    Baelus B J, Sun D, Peeters F M 2007 Phys. Rev. B 75 174523

    [10]

    Gillis S, Jykk J, MiloevićM V 2014 Phys. Rev. B 89 024512

    [11]

    Kim S, Burkardt J, Gunzburger M, Peterson J 2007 Phys. Rev. B 76 024509

    [12]

    de Romaguera A R C, Doria M M, Peeters F M 2007 Phys. Rev. B 76 020505

    [13]

    Misko V R, Fomin V M, Devreese J T, Moshchalkov V V 2003 Phys. Rev. Lett. 90 147003

    [14]

    Doria M M, de C Romaguera A R, Peeters F M 2007 Phys. Rev. B 75 064505

    [15]

    Marmorkos I K, Matulis A, Peeters F M 1996 Phys. Rev. B 53 2677

    [16]

    Carapella G, Sabatino P, Gombos M 2015 Physica C 515 7

    [17]

    Baelus B J, Peeters F M, Schweigert V A 2000 Phys Rev. B 61 9734

    [18]

    Lu-Dac M, Kabanov V V 2010 Physica C 470 942

    [19]

    Peng L, Wei Z J, Liu Y S, Fang Y F, Cai C B 2014 J. Supercond. Nov. Magn. 27 1217

    [20]

    Pan J Y, Zhang C, He F, Feng Q R 2013 Acta Phys. Sin. 62 127401 (in Chinese) [潘杰云, 张辰, 何法, 冯庆荣 2013 62 127401]

    [21]

    Ding F Z, Gu H W, Zhang T, Wang H Y, Qu F, Peng X Y, Zhou W W 2013 Acta Phys. Sin. 62 137401 (in Chinese) [丁发柱, 古宏伟, 张腾, 王洪艳, 屈飞, 彭星煜, 周微微 2013 62 137401]

    [22]

    Wang M, Ou Y B, Li F S, Zhang W H, Tang C J, Wang L L, Xue Q K, Ma X C 2014 Acta Phys. Sin. 63 027401 (in Chinese) [王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村 2014 63 027401]

    [23]

    Zhang Y H, Li Y Z 1992 Superconducting Physics (Hefei: University of Science and Technology of China Press) p85 (in Chinese) [张裕恒, 李玉芝 1992 超导物理 (合肥: 中国科学技术大学出版社) 第85页]

    [24]

    Jackson J D (translated by Zhu P Y) 1978 Classical Electrodynamics (Beijing: People's Education Press) pp195-196 (in Chinese) [杰克逊J D 著(朱培豫 译) 1978经典电动力学(北京: 人民教育出版社)第195196页]

  • [1] Quan Hai-Tao, Dong Hui, Sun Chang-Pu. Theoretical and experiments of mesoscopic statistical thermodynamics. Acta Physica Sinica, 2023, 72(23): 230501. doi: 10.7498/aps.72.20231608
    [2] Lin Nai-Bo, Lin You-Hui, Huang Qiao-Ling, Liu Xiang-Yang. Supramolecular gels and mesoscopic structure. Acta Physica Sinica, 2016, 65(17): 174702. doi: 10.7498/aps.65.174702
    [3] Shi Liang-Ma, Zhou Ming-Jian, Zhu Ren-Yi. Evolution of vortex configuration for superconducting ring in the presence of an externally applied field. Acta Physica Sinica, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [4] Yang Qin-Nan, Zhang Yan-Hui, Cai Xiang-Ji, Jiang Guo-Hui, Xu Xue-You. Chaotic behaviors and fractal self-similar analysis of particles transport properties in RIKEN mesoscopic devices. Acta Physica Sinica, 2013, 62(8): 080505. doi: 10.7498/aps.62.080505
    [5] Shi Liang-Ma, Zhang Shi-Jun, Zhu Ren-Yi. Numerical simulation of vortex structure in mesoscopic two-gap superconductor. Acta Physica Sinica, 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [6] He Rui. Quantum communication based on the circuit coupled by SQUID and mesoscopic LC resonator. Acta Physica Sinica, 2012, 61(3): 030303. doi: 10.7498/aps.61.030303
    [7] Shi Liang-Ma, Liu Lian-Zhong, Wang Xiang-Xian, Zhu Ren-Yi. Intermittent superconductivity in mesoscopic thin-film rings. Acta Physica Sinica, 2012, 61(15): 157401. doi: 10.7498/aps.61.157401
    [8] Quan Jun, T. C. Au Yeung, Shao Le-Xi. Investigation on the dynamic conductance of mesoscopic system based on the self-consistent transport theory. Acta Physica Sinica, 2011, 60(8): 087201. doi: 10.7498/aps.60.087201
    [9] Zhao Hong-Wei, Meng Hao, Zhang Ling-Feng, Zha Guo-Qiao, Zhou Shi-Ping. Transation of charged vortex structures in underdoped high-temperature superconductors. Acta Physica Sinica, 2009, 58(6): 4189-4193. doi: 10.7498/aps.58.4189
    [10] An Xing-Tao, Li Yu-Xian, Liu Jian-Jun. Noise in mesoscopic physics. Acta Physica Sinica, 2007, 56(7): 4105-4112. doi: 10.7498/aps.56.4105
    [11] Shi Fang-Ye, Fang Yun-Zhang, Sun Huai-Jun, Zheng Jin-Ju, Lin Gen-Jin, Wu Feng-Min. Mesostructure investigation of the transverse magnetic anisotropy field in stress-annealed Fe-based nanocrystalline ribbons. Acta Physica Sinica, 2007, 56(7): 4009-4016. doi: 10.7498/aps.56.4009
    [12] Wang Quan, Ding Jian-Ning, He Yu-Liang, Xue Wei, Fan Zhen. Mesoscopic mechanical characterization of hydrogenated silicon thin film and the intrinsic relationship with the microstructure. Acta Physica Sinica, 2007, 56(8): 4834-4840. doi: 10.7498/aps.56.4834
    [13] Yang Quan-Min, Xu Qi-Ming, Fang Yun-Zhang, Wang Ling-Ling, Shi Fang-Ye. Equivalent parallel RLC model in the mesoscopic structure of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloy. Acta Physica Sinica, 2007, 56(6): 3366-3373. doi: 10.7498/aps.56.3366
    [14] Yang Quan-Min, Wang Ling-Ling, Sun De-Cheng. Theoretical study on the influence of the microstructure of Fe73.5Cu1Nb3Si13.5B9 on its giant magneto-impedance effect. Acta Physica Sinica, 2005, 54(12): 5730-5737. doi: 10.7498/aps.54.5730
    [15] Long Chao-Yun. The quantum fluctuation of parallel mesoscopic RLC circuit. Acta Physica Sinica, 2003, 52(8): 2033-2036. doi: 10.7498/aps.52.2033
    [16] QU HAI, ZHOU SHI-PING. VORTEX LATTICE IN A HIGH-Tc SUPERCONDUCTOR OF MIXED PAIRING SYMMETRY. Acta Physica Sinica, 1999, 48(2): 352-362. doi: 10.7498/aps.48.352
    [17] WANG JI-SUO, HAN BAO-CUN, SUN CHANG-YONG. QUANTUM FLUCTUATIONS IN MESOSCOPIC CAPACITANCE COUPLED CIRCUITS. Acta Physica Sinica, 1998, 47(7): 1187-1192. doi: 10.7498/aps.47.1187
    [18] NIU JIN-HAI, ZHOU SHI-PING, XU KE-XI. STRUCTURE OF SINGLE VORTEX IN A s+id WAVE SUPERCONDUCTOR. Acta Physica Sinica, 1998, 47(6): 985-989. doi: 10.7498/aps.47.985
    [19] CHEN BIN, LI YOU-QUAN, SHA JIAN, ZHANG QI-RUI. QUANTUM EFFECTS OF CHARGE IN-THE MESOSCOPIC CIRCUIT. Acta Physica Sinica, 1997, 46(1): 129-133. doi: 10.7498/aps.46.129
    [20] Gao Shou-En, Chen Bin, Jiao Zheng-Kuan. . Acta Physica Sinica, 1995, 44(9): 1480-1483. doi: 10.7498/aps.44.1480
Metrics
  • Abstract views:  5916
  • PDF Downloads:  156
  • Cited By: 0
Publishing process
  • Received Date:  06 September 2015
  • Accepted Date:  30 November 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map