-
Rotating cylindrical cathodes possess high theoretical target utilization rates and have been widely applied in thin film deposition across various industries. Regarding plasma research, compared to planar cathodes, the plasma discharge and transport processes of rotating cylindrical cathodes involve three-dimensional systems. Traditional plasma models applied to these systems require extensive computational resources and suffer from poor convergence, making simulation difficult. In this context, this paper employs a two-dimensional Particle-in-cell/Monte Carlo Collision (PIC/MCC) model to calculate the plasma density and electric potential distributions as a self-consistent background field. Furthermore, a three-dimensional electron Monte Carlo (MC) method is used to track electron motion, enabling three-dimensional plasma discharge simulation. On this basis, using plasma density projection as the etching flux and coupling the Cellular Automata (CA) method, the rotational etching process of the cylindrical cathode is decomposed into stepwise micro-element static etching, thereby achieving three-dimensional etching behavior simulation. Subsequently, the etched target morphology was equivalently treated as the emission flux of In and Sn atoms, and a three-dimensional test particle Monte Carlo (MC) method was employed to track their motion, realizing three-dimensional particle deposition simulation. Thus, a comprehensive three-dimensional simulation system is constructed, incorporating the cathode magnetic field, plasma discharge, target etching, and thin-film deposition into a complete simulation chain.The results indicate that this three-dimensional simulation system can accurately predict the operating conditions of cylindrical cathodes. The plasma stably accumulates on the cylindrical cathode surface, forming a three-dimensional discharge race track. The simulated etching profile is consistent with experimental result, showing precise matching of feature points and target residual thickness. The utilization rate of the target material is 85.81%, with an error of less than 2% compared to that of the measurement. The molar ratio of In/Sn on the substrate is 11.76, with an error of 6.6% compared to the test results by Energy Dispersive Spectroscopy (EDS). The particle distribution on the substrate matched the actual film thickness distribution, with a uniform deposition length of 1730 mm, representing an error of only 1.1% compared to actual value.
-
Keywords:
- rotating cylindrical magnetron /
- three-dimensional modeling /
- plasma discharge /
- plasma transport
-
[1] Saenko A V, Tominov R V, Jityaev I L, Vakulov Z E, Avilov V I, Polupanov N V, Smirnov V A 2024 Nanomaterials 141901
[2] Dhage S R, Badgujar A C 2018 J. Alloys Compd. 763504
[3] Chen J F, Ding X P, Wang J F, Xie Z Y, Wang S H 2024 J. Alloys Compd. 1002175318
[4] Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 2041661
[5] Matthews S, De Bosscher W, Blondeel A, Van Holsbeke J, Delrue H 2008 Vacuum 83518
[6] Park J H, Ahn K J, Na S I, Kim H K 2011 Solar Energy Mater. Sol. Cells 95657
[7] Park J H, Ahn K J, Park K I, Na S I, Kim H K 2010 J. Phys. D: Appl. Phys. 43115101
[8] Van Aeken K, Maheude S, Depla D 2008 J. Phys. D: Appl. Phys. 4120
[9] Fan Q H, Grago J J, Zhou L Q 2004 J. Appl. Phys. 956017
[10] Teunissen J, Ebert U 2016 Plasma Sources Sci. T. 25044005
[11] Bogaerts A, Bultinck E, Kolev I, Schwaederlé L, Van Aeken K, Buyle G, Depla D 2009 J. Phys. D: Appl. Phys. 4219
[12] Musschoot J, Depla D, Buyle G, Haemers J, De Gryse R 2006 J. Phys. D: Appl. Phys. 3918
[13] Fu Y, Ji P, He M, Huang P, Huang G, Huang W 2024 Plasma Chem. Plasma Process. 44601
[14] Bogaerts A, Kolev I, Buyle G 2008 Modeling of the Magnetron Discharge (Berlin: Springer) pp 61-130
[15] Zhu G, Yang Y, Xiao B, Gan Z 2023 Molecules 287660
[16] Cui S H, Zuo W, Huang J, Li X T, Chen Q H, Guo Y X, Yang C, Wu Z C, Ma Z Y, Fu J Y, Tian X B, Zhu J H, Wu Z Z 2023 Acta Phys. Sin. 72085202(in Chinese) [崔岁寒, 左伟, 黄健, 李熙腾, 陈秋皓, 郭宇翔, 杨超, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振2023 72085202]
[17] Kapran A, Ballage C, Hubicka Z, Minea T 2025 Vaccum 238114324
[18] Sabavath G K, Swaroop R, Singh J, Panda A B, Haldar S, Rao N, Mahapatra S K 2022 Plasma Phys. Rep. 48548
[19] Cui S H, Chen Q H, Guo Y X, Chen L, Jin Z, Li X T, Yang C, Wu Z C, Su X Y, Ma Z Y, Fu R K Y, Tian X B, Chu P K, Chu W Z 2022 J. Phys. D: Appl. Phys. 55325203
[20] Sirghi L, Aoki T, Hatanaka Y 2004 Surf. Coat. Technol. 187358
[21] Bultinck E, Kolev I, Bogaerts A, Depla D 2008 J. Appl. Phys. 103013309
[22] Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Liu L L, An X K, Fu R K Y, Tian X B, Tan W C, Chu P K 2019 J. Appl. Phys. 125063302
[23] Lennon M A, Bell K L, Gilbody H B, Hughes J G, Kingston A E, Murray M J, Smith F J 1988 J. Phys. Chem. Ref. Data 171285
[24] Shen X Q, Xie Q, Xiao Q Q, Chen Q, Feng Y 2012 Acta Phys. Sin. 61165101(in Chinese) [沈向前, 谢泉, 肖清泉, 陈茜, 丰云2012 61165101]
[25] Chen L, Cui S H, Tang W, Zhou L, Li T, Liu L, An X, Wu Z, Ma Z, Lin H 2020 Plasma Sources Sci. Technol. 29025016
[26] Nanbu K, Konodo S 1997 Jpn. J. Appl. Phys. 364808
[27] Shidoji E, Nemoto M, Nomura T 2000 J. Vac. Sci. Technol. A 182858
[28] Mikolaychuk M, Knyazeva A 2014 AIP Conf. Proc. 1623419
[29] Liu H, Niu X, Yu D R 2019 J. Plasma Phys. 85905850208
[30] Rumble J R 2024 CRC Handbook of Chemistry and Physics (Florida: CRC Press) pp 10-113
[31] Shon C H, Lee J K 2002 Appl. Surf. Sci. 192258
Metrics
- Abstract views: 18
- PDF Downloads: 1
- Cited By: 0