Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Configuration interaction study on electronic structures and transitional properties of excited states of GeO molecule

Liu Xiao-Jun Miao Feng-Juan Li Rui Zhang Cun-Hua Li Qi-Nan Yan Bing

Citation:

Configuration interaction study on electronic structures and transitional properties of excited states of GeO molecule

Liu Xiao-Jun, Miao Feng-Juan, Li Rui, Zhang Cun-Hua, Li Qi-Nan, Yan Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • GeO molecule, which plays an important role in fabricating integrated optics and semiconductor components, has received much attention. However, the electronic state density of the molecule is very large, and the electric structures and transitional properties of the molecule have not been well investigated. In this work, the 18 Λ -S states correlated to the lowest dissociation limit (Ge(3Pg)+O(3Pg)) are calculated by a complete active space self-consistent field (CASSCF) method, through using the previous Hatree-Fock molecular orbitals as the starting orbitals. Furthermore, we take all configurations in the configuration interaction expansions of the CASSCF wave functions as a reference configuration, and calculate the energies of the 18Λ-S states by a high-level multireference configuration interaction method. The core-valence correlation effect of the 3d orbit of Ge atom, the scalar relativistic effect, and the Davidson correction are taken into consideration in the calculations. On the basis of the calculated potential energy curves of the bound and quasibound electronic states, the spectroscopic constants (Re, Te, ωe, ωeχe, and Be), vibrational energy levels, vibrational wave functions, and Franck-Condon factors (FCFs) are obtained by solving the radical Schrödinger equation. The computed spectroscopic constants of these electronic states are well consistent with previously available experimental results. We calculate the electric dipole moments of electronic states with different bound lengths, and analyze the influences of the variation of electron configuration on the electric dipole moment. The calculated potential energy curves indicate that the adiabatic transition energies of A1Π, 11Σ-, D1Δ, a3Π, a’3Σ+, d3Δ, and e3Σ- sates are located in a range of 26000-37000 cm-1, and the spin-orbit coupling of the states can obviously affect the corresponding vibrational wave functions. With the help of calculated spin-orbit coupling matrix elements, the perturbations of the nearby states to a3Π and A1Π are discussed in detail. Our calculation results indicate that the spin-orbit coupling between A1Π and e3Σ- states has an evident perturbation on the v’> 4 vibrational levels of A1Π, and the v’≥ 0 vibrational levels of a3Π state are perturbed by the crossing states a’3Σ+, d3Δ, e3Σ-, 11Σ-, and D1Δ. On the basis of computed transition dipole moments and FCFs of A1Π-X1Σ+ and A’1Σ+-X1Σ+ transitions, the radiative lifetimes of the six lowest vibrational levels of the two singlet excited states are computed.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404180, 61204127) and the Natural Science Foundation of Heilongjiang Province, China (Grant Nos. F201335, F201438, A2015010).
    [1]

    Vega F, Afonso C N, Solis J 1993 Appl. Surf. Sci. 69 403

    [2]

    Lee E G, Seto J Y, Hirao T, Bernath P F, Le Roy R J 1999 J. Mol. Spectrosc. 194 197

    [3]

    Jevons W, Bashford L A, Briscoe H V A 1937 Proc. Phys. Soc. 49 543

    [4]

    Raymonda J W, Muenter J S, Klemperer W A 1970 J. Chem. Phys. 52 3458

    [5]

    Meyer B, Smith J J, Spitzer K 1970 J. Chem. Phys. 53 3616

    [6]

    Meyer B, Jones Y, Smith J J, Spitzer K 1971 J. Mol. Spectrosc. 37 100

    [7]

    Copelle G A, Brom Jr J M 1975 J. Chem. Phys. 63 5168

    [8]

    Lagerqvist A, Renhorn I 1982 Phys. Scr. 25 241

    [9]

    Leszczynski J, Kwiatkowski J S 1993 J. Phys. Chem. 97 12189

    [10]

    Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311

    [11]

    Jalbout A F, Li X H, Abou R H 2007 Int. J. Quantum Chem. 107 522

    [12]

    Sefyani F L, Schamps J, Duflot D 1995 J. Quant. Spectrosc. Radiat. Transf. 54 1027

    [13]

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2010 J. Mol. Struct. Theochem. 960 40

    [14]

    Li R, Wei C L, Sun Q X, Sun E P, Xu H F, Yan B 2013 J. Phys. Chem. A 117 2373

    [15]

    Gao X Y, You K, Zhang X M, Liu Y L, Liu Y F 2013 Acta Phys. Sin. 62 233302 (in Chinese) [高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳 2013 62 233302]

    [16]

    Yuan L, Fan Q C, Sun W G, Fan Z X, Feng H 2014 Acta Phys. Sin. 63 043102 (in Chinese) [袁丽, 樊群超, 孙卫国, 范志祥, 冯灏 2014 63 043102]

    [17]

    Li R, Sun E P, Jin M X, Xu H F, Yan B 2014 J. Phys. Chem. A 118 2629

    [18]

    Li G X, Jiang Y C, Ling C C, Ma H Z, Li P 2014 Acta Phys. Sin. 63 127102 (in Chinese) [李桂霞, 姜永超, 凌翠翠, 马红章, 李鹏 2014 63 127102]

    [19]

    Liao J W, Yang C L 2014 Chin. Phys. B 23 073401

    [20]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schtz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar K R, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Neill D P, Palmieri P, Peng D, Pflger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M 2010 MOLPRO: a package of ab initio programs

    [21]

    Wilson A K, Woon D E, Peterson K A, Dunning Jr T H 1999 J. Chem. Phys. 110 7667

    [22]

    De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48

    [23]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548

    [24]

    De Yonker N J, Peterson K A, Wilson A K 2007 J. Phys. Chem. A 111 11383

    [25]

    Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards Publications) pp135-140

    [26]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [27]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [28]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [29]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [30]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [31]

    Douglas M, Kroll N M 1974 Ann. Phys. 82 89

    [32]

    Hess B A 1986 Phys. Rev. A 33 3742

    [33]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [34]

    Le Roy R J 2002 LEVEL 7.5: a Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-655)

    [35]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) pp236-237

  • [1]

    Vega F, Afonso C N, Solis J 1993 Appl. Surf. Sci. 69 403

    [2]

    Lee E G, Seto J Y, Hirao T, Bernath P F, Le Roy R J 1999 J. Mol. Spectrosc. 194 197

    [3]

    Jevons W, Bashford L A, Briscoe H V A 1937 Proc. Phys. Soc. 49 543

    [4]

    Raymonda J W, Muenter J S, Klemperer W A 1970 J. Chem. Phys. 52 3458

    [5]

    Meyer B, Smith J J, Spitzer K 1970 J. Chem. Phys. 53 3616

    [6]

    Meyer B, Jones Y, Smith J J, Spitzer K 1971 J. Mol. Spectrosc. 37 100

    [7]

    Copelle G A, Brom Jr J M 1975 J. Chem. Phys. 63 5168

    [8]

    Lagerqvist A, Renhorn I 1982 Phys. Scr. 25 241

    [9]

    Leszczynski J, Kwiatkowski J S 1993 J. Phys. Chem. 97 12189

    [10]

    Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311

    [11]

    Jalbout A F, Li X H, Abou R H 2007 Int. J. Quantum Chem. 107 522

    [12]

    Sefyani F L, Schamps J, Duflot D 1995 J. Quant. Spectrosc. Radiat. Transf. 54 1027

    [13]

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2010 J. Mol. Struct. Theochem. 960 40

    [14]

    Li R, Wei C L, Sun Q X, Sun E P, Xu H F, Yan B 2013 J. Phys. Chem. A 117 2373

    [15]

    Gao X Y, You K, Zhang X M, Liu Y L, Liu Y F 2013 Acta Phys. Sin. 62 233302 (in Chinese) [高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳 2013 62 233302]

    [16]

    Yuan L, Fan Q C, Sun W G, Fan Z X, Feng H 2014 Acta Phys. Sin. 63 043102 (in Chinese) [袁丽, 樊群超, 孙卫国, 范志祥, 冯灏 2014 63 043102]

    [17]

    Li R, Sun E P, Jin M X, Xu H F, Yan B 2014 J. Phys. Chem. A 118 2629

    [18]

    Li G X, Jiang Y C, Ling C C, Ma H Z, Li P 2014 Acta Phys. Sin. 63 127102 (in Chinese) [李桂霞, 姜永超, 凌翠翠, 马红章, 李鹏 2014 63 127102]

    [19]

    Liao J W, Yang C L 2014 Chin. Phys. B 23 073401

    [20]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schtz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar K R, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Neill D P, Palmieri P, Peng D, Pflger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M 2010 MOLPRO: a package of ab initio programs

    [21]

    Wilson A K, Woon D E, Peterson K A, Dunning Jr T H 1999 J. Chem. Phys. 110 7667

    [22]

    De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48

    [23]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548

    [24]

    De Yonker N J, Peterson K A, Wilson A K 2007 J. Phys. Chem. A 111 11383

    [25]

    Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards Publications) pp135-140

    [26]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [27]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [28]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [29]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [30]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [31]

    Douglas M, Kroll N M 1974 Ann. Phys. 82 89

    [32]

    Hess B A 1986 Phys. Rev. A 33 3742

    [33]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [34]

    Le Roy R J 2002 LEVEL 7.5: a Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-655)

    [35]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) pp236-237

  • [1] Zhu Yu-Hao, Li Rui. Study of electronic structure and optical transition properties of low-lying excited states of AuB molecules based on configuration interaction method. Acta Physica Sinica, 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [2] Zhang Jin-Fang, Ren Ya-Na, Wang Jun-Min, Yang Bao-Dong. Investigation of the two-color polarization spectroscopy between the excited states based on cesium atoms. Acta Physica Sinica, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [3] Zhao Shu-Tao, Liang Gui-Ying, Li Rui, Li Qi-Nan, Zhang Zhi-Guo, Yan Bing. Theoretical study on the electronic structure and transition properties of excited state of ZnH molecule. Acta Physica Sinica, 2017, 66(6): 063103. doi: 10.7498/aps.66.063103
    [4] Li Gui-Xia, Jiang Yong-Chao, Ling Cui-Cui, Ma Hong-Zhang, Li Peng. The characteristics of excited states for HF+ ion under spin-orbit coupling. Acta Physica Sinica, 2014, 63(12): 127102. doi: 10.7498/aps.63.127102
    [5] Zhu Zun-Lue, Lang Jian-Hua, Qiao Hao. Study on spectroscopic properties and molecular constants of the ground and excited states of AsCl free-radical. Acta Physica Sinica, 2013, 62(11): 113103. doi: 10.7498/aps.62.113103
    [6] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao. Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [7] Tian Yuan-Ye, Guo Fu-Ming, Zeng Si-Liang, Yang Yu-Jun. Investigation of photoionization of excited atom irradiated by the high-frequency intense laser. Acta Physica Sinica, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [8] Yu Kun, Zhang Xiao-Mei, Liu Yu-Fang. Ab initio calculation on the potential energy curves and spectroscopic properties of the low-lying excited states of BCl. Acta Physica Sinica, 2013, 62(6): 063301. doi: 10.7498/aps.62.063301
    [9] Gao Xue-Yan, You Kai, Zhang Xiao-Mei, Liu Yan-Lei, Liu Yu-Fang. Multi-reference calculations on the potential energy curves and spectroscopic properties of the low-lying excited states of BS+. Acta Physica Sinica, 2013, 62(23): 233302. doi: 10.7498/aps.62.233302
    [10] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [11] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation. Acta Physica Sinica, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [12] Wang Jie-Min, Zhang Lei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. A Multi-reference configuration interaction investigation of the X2+and A2 low-lying electronic states of AsO+ isotope ion. Acta Physica Sinica, 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [13] Liu Dong-Mei, Zhang Shu-Dong. MRCI calculations for BeCl electronic excited states. Acta Physica Sinica, 2012, 61(3): 033101. doi: 10.7498/aps.61.033101
    [14] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [15] Wang Jie-Min, Sun Jin-Feng. Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [16] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [17] Wang Quan-Wu, Chen Heng-Jie, Cheng Xin-Lu, Su Xin-Fang, Tang Hai-Yan. Multi-reference configuration interaction of the ground and low-lying excited states of LiC. Acta Physica Sinica, 2010, 59(7): 4556-4563. doi: 10.7498/aps.59.4556
    [18] Wang Xin-Qiang, Yang Chuan-Lu, Su Tao, Wang Mei-Shan. Analytical potential energy functions and spectroscopic properties of the ground and excited states of BH molecule. Acta Physica Sinica, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [19] Qian Qi, Yang Chuan-Lu, Gao Feng, Zhang Xiao-Yan. Multi-reference configuration interaction study on analytical potential energy function and spectroscopic constants of XOn(X=S,Cl; n=0,±1). Acta Physica Sinica, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
    [20] Gao Feng, Yang Chuan_Lu, Zhang Xiao_Yan. MRCI potential curves and analytical potential energy functions of the low-lying excited states (1∏,3∏) of ZnHg. Acta Physica Sinica, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
Metrics
  • Abstract views:  7339
  • PDF Downloads:  358
  • Cited By: 0
Publishing process
  • Received Date:  31 October 2014
  • Accepted Date:  22 January 2015
  • Published Online:  05 June 2015

/

返回文章
返回
Baidu
map