-
利用量子化学从头计算方法MRCI+Q在AVQZ级别上对BS+离子进行了研究. 通过计算得到了与BS+离解极限B+(1Sg)+S(3Pg)和B+(1Sg)+S(1D)对应的5个-S态,确认了BS+离子的基态为X3电子态,而第一激发态1+的激发能Te仅仅为564.53 cm-1. 首次纳入的旋轨耦合效应(SOC)使得BS+的5个-S态分裂成为9个态,原有的两个离解极限分裂为B+(1S0)+S(3P2),B+(1S0)+S(3P1),B+(1S0)+(3P1)以及B+(1S0)+S(1D2). 在考虑自旋轨道耦合效应之后,态的基态为X2态. 通过势能曲线(PECs)可以发现所得到的-S态和态均为束缚态,利用LEVEL8.0程序拟合得到了对应电子态的光谱常数,这些结果可以为实验和理论方面进一步研究BS+的光谱性质提供准确的电子结构信息.
-
关键词:
- 势能曲线 /
- 光谱参数 /
- 多参考组态相互作用方法 /
- Davidson修正(+Q)
The high-level quantum chemistry ab initio multi-reference configuration interaction method (MRCI) with reasonable aug-cc-p VQZ basis sets is used to calculate the potential energy curves of 5 -S states of BS+ radical related to the dissociation limit B+(1Sg)+S(3Pg) and B+(1Sg)+S(1D), where the ground state of X3 is determined. The spin-orbit interaction is firstly considered, which makes the calculated 5 -S states split in to 9 states. Calculated results show that avoided crossing rule exists between the states of the same symmetry. Analysis of electronic structures of -S states shows that the -S electronic states are multi-configuration in nature. Then the spectroscopic constants of the bound -S and states are obtained by solving the radial Schrdinger equation. All of these data will provide accurate information of the electron structure for further research on BS+ in theory and experiment.-
Keywords:
- potential energy curve /
- spectroscopic constant /
- MRCI /
- davidson correction (+Q)
[1] Zeeman P B 1950 Phys. Rev. 80 902
[2] Zeeman P B 1951 Can. J. Phys. 29 336
[3] Koryazhkin V A, Mal’tsev A A 1968 Moscow Univ. Chem. Bull.Engl. Transl. 23 63
[4] McDonald J K, Innes K K 1969 J. Mol. Spectrosc. 29 251
[5] Uy O M, Drowart J 1970 High Temp. Sci. 2 293
[6] Gingerich K A 1970 J. Chem. Soc. D: Chem. Commun. 10 580
[7] Singh J, Tewari D P, Mohan H 1971 Indian J. Pure. Appl. Phys. 9 269A
[8] Brom J M, Weltner W 1972 J. Chem. Phys. 57 3379
[9] Yang X Z, Boggs J E 2005 Chem. Phys. Lett. 410 269
[10] Jiang L J, Wang X X 2012 Journal of Henan Polytechnic Polytechnic University 31 494 (in Chinese) [蒋利娟, 王晓雪 2012 河南理工大学学报 31 494]
[11] Le Roy R J. LEVEL 8.0: a computer program for solving the radial Schrödinger equation for bound and quasibound levels. University of Waterloo Chemical Physics Research Report CP-663; 2007
[12] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
[13] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
[14] Werner H J, Knowles PJ 1988 J. Chem. Phys. 89 5803
[15] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[16] Wang X Y, Ding S L 2004 Acta Phys. Sin. 53 423 (in Chinese) [王晓艳, 丁世良 2004 53 423]
[17] Han H X, Peng Q, Wen Z Y, Wang YB 2005 Acta Phys. Sin. 54 78 (in Chinese) [韩慧仙, 彭谦, 文振翼, 王育彬 2005 54 78]
[18] Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823
[19] Moore C E 1971 Atomic energy levels (Washington, DC: National Bureau of Standards)
[20] Li R, Lian K Y, Li Q N, Miao F J, Yan B Jin M X 2012 Chin. Phys. B 21123102
[21] Yan B, Zhang Y J 2013 Chin. Phys. B 22 023103
[22] Zhou L S, Yan B, Jin M X 2013 Chin. Phys. B 22 043102
-
[1] Zeeman P B 1950 Phys. Rev. 80 902
[2] Zeeman P B 1951 Can. J. Phys. 29 336
[3] Koryazhkin V A, Mal’tsev A A 1968 Moscow Univ. Chem. Bull.Engl. Transl. 23 63
[4] McDonald J K, Innes K K 1969 J. Mol. Spectrosc. 29 251
[5] Uy O M, Drowart J 1970 High Temp. Sci. 2 293
[6] Gingerich K A 1970 J. Chem. Soc. D: Chem. Commun. 10 580
[7] Singh J, Tewari D P, Mohan H 1971 Indian J. Pure. Appl. Phys. 9 269A
[8] Brom J M, Weltner W 1972 J. Chem. Phys. 57 3379
[9] Yang X Z, Boggs J E 2005 Chem. Phys. Lett. 410 269
[10] Jiang L J, Wang X X 2012 Journal of Henan Polytechnic Polytechnic University 31 494 (in Chinese) [蒋利娟, 王晓雪 2012 河南理工大学学报 31 494]
[11] Le Roy R J. LEVEL 8.0: a computer program for solving the radial Schrödinger equation for bound and quasibound levels. University of Waterloo Chemical Physics Research Report CP-663; 2007
[12] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
[13] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
[14] Werner H J, Knowles PJ 1988 J. Chem. Phys. 89 5803
[15] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[16] Wang X Y, Ding S L 2004 Acta Phys. Sin. 53 423 (in Chinese) [王晓艳, 丁世良 2004 53 423]
[17] Han H X, Peng Q, Wen Z Y, Wang YB 2005 Acta Phys. Sin. 54 78 (in Chinese) [韩慧仙, 彭谦, 文振翼, 王育彬 2005 54 78]
[18] Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823
[19] Moore C E 1971 Atomic energy levels (Washington, DC: National Bureau of Standards)
[20] Li R, Lian K Y, Li Q N, Miao F J, Yan B Jin M X 2012 Chin. Phys. B 21123102
[21] Yan B, Zhang Y J 2013 Chin. Phys. B 22 023103
[22] Zhou L S, Yan B, Jin M X 2013 Chin. Phys. B 22 043102
计量
- 文章访问数: 6864
- PDF下载量: 426
- 被引次数: 0