搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BeCl分子电子激发态的多参考组态相互作用计算

刘冬梅 张树东

引用本文:
Citation:

BeCl分子电子激发态的多参考组态相互作用计算

刘冬梅, 张树东

MRCI calculations for BeCl electronic excited states

Liu Dong-Mei, Zhang Shu-Dong
PDF
导出引用
  • 运用含Davidson修正的多参考组态相互作用方法,在aug-cc-pVTZ基组水平上,对BeCl分子基态和相同多重度的几个低电子激发态进行了势能扫描计算.通过群论原理确定各电子态对称性及离解极限.将其中基态(X2+)和第一激发态(A2})对应的势能曲线拟合到Murrell-Sorbie解析势能函数形式,得到基态(X2+)的离解能及主要光谱常数(括号中为文献[6]提供的实验值)为De=3.74eV,Re=0.18173nm(0.17970),we=857.4cm1(847.2),wexe=5.03cm-1(5.14),Be=0.7103cm-1(0.7285),e=0.0059cm-1(0.0069),第一激发态(A2)的De=3.02eV,Re=0.18369nm(0.18211),we=832.7cm-1(822.1),wexe=5.93cm-1(5.24),Be=0.6953cm-1(0.7094),e=0.0065cm-1(0.0068),计算结果与实验值符合得较好.另外,通过Level程序求解双原子径向核运动的Schrdinger方程得到J=0时BeCl分子这两个电子态的全部振动能级.
    Potential energy curves (PECs)for the ground state and several low-lying electronic excited states of BeCl molecule are calculated using the multi-reference configuration interaction (MRCI)method with the basis set of aug-cc-pVTZ where the Davidson correction is considered as an approximation to full CI. The symmetries and dissociation limits for these electronic states are determined through group theory. The PECs of ground state(X2+)and first excited state(A2)are fitted to the Murrell-Sorbie (MS)potential function, and from the fitting parameters the spectroscopic constants are determined to be De=3.74 eV, Re=0.18173 nm(0.17970), we=857.4 cm-1(847.2), wexe=5.03 cm-1(5.14), Be=0.7103 cm-1(0.7285), and e =0.0059 cm-1(0.0069)(where the values in parentheses are the cited experimental results)for X2+ state and De=3.02 eV, Re=0.18369 nm(0.18211), we=832.7 cm-1(822.1), wexe=5.93 cm-1(5.24), Be=0.6953 cm-1(0.7094), and e=0.0065 cm-1(0.0068)for A2 state of BeCl. All the calculation results are in good agreement with the experimental values. In addition, we use the Level program to calculate the radial Schrdinger equation of nuclear motion to obtain the vibrational levels for the X2+ and A2 states.
    [1]

    Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing: Science Press)(in Chinese)[朱正和, 俞华根 1997 分子结构与势能函数 (北京: 科学出版社)]

    [2]

    Farber M, Srivastava R D 1974 J. Chem. Soc. Faraday Trans. 70 1581

    [3]

    Hildenbrand D L, Theard L P 1969 J. Chem. Phys. 50 5350

    [4]

    Carleer M, Burtin B, Colin R 1977 J. Can. J. Phys. 55 582

    [5]

    Gaydon A G 1968 Dissociation Energies and Spectra of Diatomic Molecules (London: Chapman and Hall Press)

    [6]

    Colin R, Carleer M, Prevot F 1972 J. Can. J. Phys. 50 171

    [7]

    Rajamanickam N, Prahllad U D, Narasimhamurthy B 1982 J. Pramana-J. Phys. 18 225

    [8]

    Singh J, Prabhuram J 1975 Indian J. Pure Appl. Phys. 13 133

    [9]

    Hulbert H M, Hirschfelder J O 1941 J. Chem. Phys. 9 61

    [10]

    Behere S H, Saksena M D, Deo M N, Jadhav A S 2006 J. Quant. Spectr. Rad. Trans. 97 1

    [11]

    Hirao T, Bernath P F, Fellows C E, Gutterres R F, VervloetM2002 J. Mol. Spectrosc. 212 53

    [12]

    Hirao T, Pinchemel B, Bernath P F 2000 J. Mol. Spectrosc. 202 213

    [13]

    Huang M D, Becker-Ross H, Florek S, Heitmann U, Okruss M 2008 Spectrochimica Acta B: Atomic Spectroscopy 63 566

    [14]

    Bahrini C, Douin S, Rostas J, Taieb G 2006 J. Chem. Phys. Lett. 432 1

    [15]

    Li M, Ni Q L, Chen B 2009 Acta Phys. Sin. 58 6894 (in Chinese)[李敏, 尼启良, 陈波 2009 58 6894]

    [16]

    Hu J, Sun J X, Chen X M, Cai L C 2010 Acta Phys. Sin. 59 3384 (in Chinese)[胡静, 孙久勋, 陈熙盟蔡, 灵仓 2010 59} 3384]

    [17]

    Neese F, Wennmohs F 2010 ORCA-An ab initio, DFT and semiempirical SCF-MO kackage, Version 2.8-20. Bonn, Germany

    [18]

    Hegarty D, Robb M A 1979 J. Mol. Phys. 38 1795

    [19]

    Chen H J, Cheng X L, Tang H Y, Wang Q W, Su X F 2010 Acta Phys. Sin. 59 4556 (in Chinese)[陈恒杰, 程新路, 唐海燕, 王全武, 苏欣纺 2010 59} 4556]

    [20]

    Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese)[王新强, 杨传路, 苏涛, 王美山 2009 58 6873]

    [21]

    Kendall R A, Dunning Jr T, Harrison R J 1992 J. Chem. Phys. 96 6796

    [22]

    Head G M, Pople J A, Frisch M J 1988 Chem. Phys. Lett. 153 503

    [23]

    Murrell J N, Carter S, Farantos S C, Huxley P, Varandas J C 1984 Molecular Potential Energy Functions (Chichester: John Wiley & Sons)

    [24]

    Le Roy R J 2007 Level 8.0-A computer program for solving the radial Schrödinger equation for bound and quasibound levels, University of Waterloo Chemical Physics Research Report No. CP- 663

    [25]

    Head G M, Maurice D, Oumi M J 1995 Chem. Phys. Lett. 246 114

    [26]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [27]

    FrischMJ, Trucks GW, Schlegel H B 2003 Gaussian 03, Revision B.01. (Pittsburgh, PA: Gaussian, Inc.)

    [28]

    Casida M E, Jamorski C, Casida K C, Salahub D R 1998 J. Chem. Phys. 108 4439 033101-5

  • [1]

    Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing: Science Press)(in Chinese)[朱正和, 俞华根 1997 分子结构与势能函数 (北京: 科学出版社)]

    [2]

    Farber M, Srivastava R D 1974 J. Chem. Soc. Faraday Trans. 70 1581

    [3]

    Hildenbrand D L, Theard L P 1969 J. Chem. Phys. 50 5350

    [4]

    Carleer M, Burtin B, Colin R 1977 J. Can. J. Phys. 55 582

    [5]

    Gaydon A G 1968 Dissociation Energies and Spectra of Diatomic Molecules (London: Chapman and Hall Press)

    [6]

    Colin R, Carleer M, Prevot F 1972 J. Can. J. Phys. 50 171

    [7]

    Rajamanickam N, Prahllad U D, Narasimhamurthy B 1982 J. Pramana-J. Phys. 18 225

    [8]

    Singh J, Prabhuram J 1975 Indian J. Pure Appl. Phys. 13 133

    [9]

    Hulbert H M, Hirschfelder J O 1941 J. Chem. Phys. 9 61

    [10]

    Behere S H, Saksena M D, Deo M N, Jadhav A S 2006 J. Quant. Spectr. Rad. Trans. 97 1

    [11]

    Hirao T, Bernath P F, Fellows C E, Gutterres R F, VervloetM2002 J. Mol. Spectrosc. 212 53

    [12]

    Hirao T, Pinchemel B, Bernath P F 2000 J. Mol. Spectrosc. 202 213

    [13]

    Huang M D, Becker-Ross H, Florek S, Heitmann U, Okruss M 2008 Spectrochimica Acta B: Atomic Spectroscopy 63 566

    [14]

    Bahrini C, Douin S, Rostas J, Taieb G 2006 J. Chem. Phys. Lett. 432 1

    [15]

    Li M, Ni Q L, Chen B 2009 Acta Phys. Sin. 58 6894 (in Chinese)[李敏, 尼启良, 陈波 2009 58 6894]

    [16]

    Hu J, Sun J X, Chen X M, Cai L C 2010 Acta Phys. Sin. 59 3384 (in Chinese)[胡静, 孙久勋, 陈熙盟蔡, 灵仓 2010 59} 3384]

    [17]

    Neese F, Wennmohs F 2010 ORCA-An ab initio, DFT and semiempirical SCF-MO kackage, Version 2.8-20. Bonn, Germany

    [18]

    Hegarty D, Robb M A 1979 J. Mol. Phys. 38 1795

    [19]

    Chen H J, Cheng X L, Tang H Y, Wang Q W, Su X F 2010 Acta Phys. Sin. 59 4556 (in Chinese)[陈恒杰, 程新路, 唐海燕, 王全武, 苏欣纺 2010 59} 4556]

    [20]

    Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese)[王新强, 杨传路, 苏涛, 王美山 2009 58 6873]

    [21]

    Kendall R A, Dunning Jr T, Harrison R J 1992 J. Chem. Phys. 96 6796

    [22]

    Head G M, Pople J A, Frisch M J 1988 Chem. Phys. Lett. 153 503

    [23]

    Murrell J N, Carter S, Farantos S C, Huxley P, Varandas J C 1984 Molecular Potential Energy Functions (Chichester: John Wiley & Sons)

    [24]

    Le Roy R J 2007 Level 8.0-A computer program for solving the radial Schrödinger equation for bound and quasibound levels, University of Waterloo Chemical Physics Research Report No. CP- 663

    [25]

    Head G M, Maurice D, Oumi M J 1995 Chem. Phys. Lett. 246 114

    [26]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [27]

    FrischMJ, Trucks GW, Schlegel H B 2003 Gaussian 03, Revision B.01. (Pittsburgh, PA: Gaussian, Inc.)

    [28]

    Casida M E, Jamorski C, Casida K C, Salahub D R 1998 J. Chem. Phys. 108 4439 033101-5

  • [1] 朱宇豪, 李瑞. 基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究.  , 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [2] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究.  , 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [3] 张计才, 孙金锋, 施德恒, 朱遵略. BeC分子基态和低激发态光谱性质和解析势能函数.  , 2019, 68(5): 053102. doi: 10.7498/aps.68.20181695
    [4] 魏长立, 廖浩, 罗太盛, 任银拴, 闫冰. Na2+离子较低电子态势能曲线和光谱常数的理论研究.  , 2018, 67(24): 243101. doi: 10.7498/aps.67.20181690
    [5] 李晨曦, 郭迎春, 王兵兵. O2分子B3u-态势能曲线的从头计算.  , 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [6] 周锐, 李传亮, 和小虎, 邱选兵, 孟慧艳, 李亚超, 赖云忠, 魏计林, 邓伦华. 基于ab initio计算的CF-离子低激发态光谱性质研究.  , 2017, 66(2): 023101. doi: 10.7498/aps.66.023101
    [7] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质.  , 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [8] 韩亚楠, 蒋刚, 范全平, 高玉峰, 杜际广. 激发态Li原子和基态Ar原子的相互作用势及低能弹性碰撞.  , 2015, 64(4): 043401. doi: 10.7498/aps.64.043401
    [9] 刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰. GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究.  , 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [10] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质.  , 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [11] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究.  , 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [12] 朱遵略, 郎建华, 乔浩. AsCl自由基的基态及激发态的势能函数与光谱常数的研究.  , 2013, 62(11): 113103. doi: 10.7498/aps.62.113103
    [13] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究.  , 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [14] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究.  , 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [15] 魏洪源, 熊晓玲, 刘国平, 罗顺忠. TiO基态 (X 3 Δr) 的势能函数与光谱常数.  , 2011, 60(6): 063401. doi: 10.7498/aps.60.063401
    [16] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数.  , 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [17] 陈恒杰, 程新路, 唐海燕, 王全武, 苏欣纺. LiC分子基态及其低电子激发态的多参考组态相互作用方法研究.  , 2010, 59(7): 4556-4563. doi: 10.7498/aps.59.4556
    [18] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质.  , 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [19] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数.  , 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [20] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数.  , 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
计量
  • 文章访问数:  8318
  • PDF下载量:  670
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-18
  • 修回日期:  2011-05-04
  • 刊出日期:  2012-03-15

/

返回文章
返回
Baidu
map