-
运用含Davidson修正的多参考组态相互作用方法,在aug-cc-pVTZ基组水平上,对BeCl分子基态和相同多重度的几个低电子激发态进行了势能扫描计算.通过群论原理确定各电子态对称性及离解极限.将其中基态(X2+)和第一激发态(A2})对应的势能曲线拟合到Murrell-Sorbie解析势能函数形式,得到基态(X2+)的离解能及主要光谱常数(括号中为文献[6]提供的实验值)为De=3.74eV,Re=0.18173nm(0.17970),we=857.4cm1(847.2),wexe=5.03cm-1(5.14),Be=0.7103cm-1(0.7285),e=0.0059cm-1(0.0069),第一激发态(A2)的De=3.02eV,Re=0.18369nm(0.18211),we=832.7cm-1(822.1),wexe=5.93cm-1(5.24),Be=0.6953cm-1(0.7094),e=0.0065cm-1(0.0068),计算结果与实验值符合得较好.另外,通过Level程序求解双原子径向核运动的Schrdinger方程得到J=0时BeCl分子这两个电子态的全部振动能级.
-
关键词:
- BeCl /
- 多参考组态相互作用计算 /
- 激发态势能曲线 /
- 光谱常数
Potential energy curves (PECs)for the ground state and several low-lying electronic excited states of BeCl molecule are calculated using the multi-reference configuration interaction (MRCI)method with the basis set of aug-cc-pVTZ where the Davidson correction is considered as an approximation to full CI. The symmetries and dissociation limits for these electronic states are determined through group theory. The PECs of ground state(X2+)and first excited state(A2)are fitted to the Murrell-Sorbie (MS)potential function, and from the fitting parameters the spectroscopic constants are determined to be De=3.74 eV, Re=0.18173 nm(0.17970), we=857.4 cm-1(847.2), wexe=5.03 cm-1(5.14), Be=0.7103 cm-1(0.7285), and e =0.0059 cm-1(0.0069)(where the values in parentheses are the cited experimental results)for X2+ state and De=3.02 eV, Re=0.18369 nm(0.18211), we=832.7 cm-1(822.1), wexe=5.93 cm-1(5.24), Be=0.6953 cm-1(0.7094), and e=0.0065 cm-1(0.0068)for A2 state of BeCl. All the calculation results are in good agreement with the experimental values. In addition, we use the Level program to calculate the radial Schrdinger equation of nuclear motion to obtain the vibrational levels for the X2+ and A2 states.-
Keywords:
- BeCl /
- multi-reference configuration interaction calculation /
- potential energy curves of excited states /
- spectroscopic constants
[1] Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing: Science Press)(in Chinese)[朱正和, 俞华根 1997 分子结构与势能函数 (北京: 科学出版社)]
[2] Farber M, Srivastava R D 1974 J. Chem. Soc. Faraday Trans. 70 1581
[3] Hildenbrand D L, Theard L P 1969 J. Chem. Phys. 50 5350
[4] Carleer M, Burtin B, Colin R 1977 J. Can. J. Phys. 55 582
[5] Gaydon A G 1968 Dissociation Energies and Spectra of Diatomic Molecules (London: Chapman and Hall Press)
[6] Colin R, Carleer M, Prevot F 1972 J. Can. J. Phys. 50 171
[7] Rajamanickam N, Prahllad U D, Narasimhamurthy B 1982 J. Pramana-J. Phys. 18 225
[8] Singh J, Prabhuram J 1975 Indian J. Pure Appl. Phys. 13 133
[9] Hulbert H M, Hirschfelder J O 1941 J. Chem. Phys. 9 61
[10] Behere S H, Saksena M D, Deo M N, Jadhav A S 2006 J. Quant. Spectr. Rad. Trans. 97 1
[11] Hirao T, Bernath P F, Fellows C E, Gutterres R F, VervloetM2002 J. Mol. Spectrosc. 212 53
[12] Hirao T, Pinchemel B, Bernath P F 2000 J. Mol. Spectrosc. 202 213
[13] Huang M D, Becker-Ross H, Florek S, Heitmann U, Okruss M 2008 Spectrochimica Acta B: Atomic Spectroscopy 63 566
[14] Bahrini C, Douin S, Rostas J, Taieb G 2006 J. Chem. Phys. Lett. 432 1
[15] Li M, Ni Q L, Chen B 2009 Acta Phys. Sin. 58 6894 (in Chinese)[李敏, 尼启良, 陈波 2009 58 6894]
[16] Hu J, Sun J X, Chen X M, Cai L C 2010 Acta Phys. Sin. 59 3384 (in Chinese)[胡静, 孙久勋, 陈熙盟蔡, 灵仓 2010 59} 3384]
[17] Neese F, Wennmohs F 2010 ORCA-An ab initio, DFT and semiempirical SCF-MO kackage, Version 2.8-20. Bonn, Germany
[18] Hegarty D, Robb M A 1979 J. Mol. Phys. 38 1795
[19] Chen H J, Cheng X L, Tang H Y, Wang Q W, Su X F 2010 Acta Phys. Sin. 59 4556 (in Chinese)[陈恒杰, 程新路, 唐海燕, 王全武, 苏欣纺 2010 59} 4556]
[20] Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese)[王新强, 杨传路, 苏涛, 王美山 2009 58 6873]
[21] Kendall R A, Dunning Jr T, Harrison R J 1992 J. Chem. Phys. 96 6796
[22] Head G M, Pople J A, Frisch M J 1988 Chem. Phys. Lett. 153 503
[23] Murrell J N, Carter S, Farantos S C, Huxley P, Varandas J C 1984 Molecular Potential Energy Functions (Chichester: John Wiley & Sons)
[24] Le Roy R J 2007 Level 8.0-A computer program for solving the radial Schrödinger equation for bound and quasibound levels, University of Waterloo Chemical Physics Research Report No. CP- 663
[25] Head G M, Maurice D, Oumi M J 1995 Chem. Phys. Lett. 246 114
[26] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
[27] FrischMJ, Trucks GW, Schlegel H B 2003 Gaussian 03, Revision B.01. (Pittsburgh, PA: Gaussian, Inc.)
[28] Casida M E, Jamorski C, Casida K C, Salahub D R 1998 J. Chem. Phys. 108 4439 033101-5
-
[1] Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing: Science Press)(in Chinese)[朱正和, 俞华根 1997 分子结构与势能函数 (北京: 科学出版社)]
[2] Farber M, Srivastava R D 1974 J. Chem. Soc. Faraday Trans. 70 1581
[3] Hildenbrand D L, Theard L P 1969 J. Chem. Phys. 50 5350
[4] Carleer M, Burtin B, Colin R 1977 J. Can. J. Phys. 55 582
[5] Gaydon A G 1968 Dissociation Energies and Spectra of Diatomic Molecules (London: Chapman and Hall Press)
[6] Colin R, Carleer M, Prevot F 1972 J. Can. J. Phys. 50 171
[7] Rajamanickam N, Prahllad U D, Narasimhamurthy B 1982 J. Pramana-J. Phys. 18 225
[8] Singh J, Prabhuram J 1975 Indian J. Pure Appl. Phys. 13 133
[9] Hulbert H M, Hirschfelder J O 1941 J. Chem. Phys. 9 61
[10] Behere S H, Saksena M D, Deo M N, Jadhav A S 2006 J. Quant. Spectr. Rad. Trans. 97 1
[11] Hirao T, Bernath P F, Fellows C E, Gutterres R F, VervloetM2002 J. Mol. Spectrosc. 212 53
[12] Hirao T, Pinchemel B, Bernath P F 2000 J. Mol. Spectrosc. 202 213
[13] Huang M D, Becker-Ross H, Florek S, Heitmann U, Okruss M 2008 Spectrochimica Acta B: Atomic Spectroscopy 63 566
[14] Bahrini C, Douin S, Rostas J, Taieb G 2006 J. Chem. Phys. Lett. 432 1
[15] Li M, Ni Q L, Chen B 2009 Acta Phys. Sin. 58 6894 (in Chinese)[李敏, 尼启良, 陈波 2009 58 6894]
[16] Hu J, Sun J X, Chen X M, Cai L C 2010 Acta Phys. Sin. 59 3384 (in Chinese)[胡静, 孙久勋, 陈熙盟蔡, 灵仓 2010 59} 3384]
[17] Neese F, Wennmohs F 2010 ORCA-An ab initio, DFT and semiempirical SCF-MO kackage, Version 2.8-20. Bonn, Germany
[18] Hegarty D, Robb M A 1979 J. Mol. Phys. 38 1795
[19] Chen H J, Cheng X L, Tang H Y, Wang Q W, Su X F 2010 Acta Phys. Sin. 59 4556 (in Chinese)[陈恒杰, 程新路, 唐海燕, 王全武, 苏欣纺 2010 59} 4556]
[20] Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese)[王新强, 杨传路, 苏涛, 王美山 2009 58 6873]
[21] Kendall R A, Dunning Jr T, Harrison R J 1992 J. Chem. Phys. 96 6796
[22] Head G M, Pople J A, Frisch M J 1988 Chem. Phys. Lett. 153 503
[23] Murrell J N, Carter S, Farantos S C, Huxley P, Varandas J C 1984 Molecular Potential Energy Functions (Chichester: John Wiley & Sons)
[24] Le Roy R J 2007 Level 8.0-A computer program for solving the radial Schrödinger equation for bound and quasibound levels, University of Waterloo Chemical Physics Research Report No. CP- 663
[25] Head G M, Maurice D, Oumi M J 1995 Chem. Phys. Lett. 246 114
[26] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
[27] FrischMJ, Trucks GW, Schlegel H B 2003 Gaussian 03, Revision B.01. (Pittsburgh, PA: Gaussian, Inc.)
[28] Casida M E, Jamorski C, Casida K C, Salahub D R 1998 J. Chem. Phys. 108 4439 033101-5
计量
- 文章访问数: 8318
- PDF下载量: 670
- 被引次数: 0