Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of electronic structure and optical transition properties of low-lying excited states of AuB molecules based on configuration interaction method

Zhu Yu-Hao Li Rui

Citation:

Study of electronic structure and optical transition properties of low-lying excited states of AuB molecules based on configuration interaction method

Zhu Yu-Hao, Li Rui
PDF
HTML
Get Citation
  • High-level configuration interaction method including the spin-orbit coupling is used to investigate the low-lying excited electronic states of AuB that is not reported experimentally. The electronic structure in our work is preformed through the three steps stated below. First of all, Hartree-Fock method is performed to compute the singlet-configuration wavefunction as the initial guess. Next, we generate a multi-reference wavefunction by using the state-averaged complete active space self-consistent field (SACASSCF). Finally, the wavefunctions from CASSCF are utilized as reference, the exact energy point values are calculated by the explicitly correlated dynamic multi-reference configuration interaction method (MRCI). The Davidson correction (+Q) is put forward to solve the size-consistence problem caused by the MRCI method. To ensure the accuracy, the spin-orbit effect and correlation for inner shell electrons and valence shell electrons are considered in our calculation. The potential energy curves of 12 Λ-S electronic states are obtained. According to the explicit potential energy curves, we calculate the spectroscopic constants through solving radial Schrödinger equation numerically. We analyze the influence of electronic state configuration on the dipole moment by using the variation of dipole moment with nuclear distance. The spin-orbit matrix elements for parts of low-lying exciting states are computed, and the relation between spin-orbit coupling and predissociation is discussed. The predissociation is analyzed by using the obtained spin-orbit matrix elements of the 4 Λ-S states which spilt into 12 Ω states. It indicates that due to the absence of the intersections between the curves of spin-orbit matrix elements related with the 4 low-lying Λ-S states, the predissociation for these low-lying exciting states will not occur. Finally, the properties of optical transition between the ground Ω state $ {\rm A}^{1}{{{\Pi}}}_{1} $ and first excited Ω state $ {{\mathrm{X}}}^{1}{{{\Sigma }}}_{{0}^{+}} $ are discussed in laser-cooling filed by analyzing the Franck-Condon factors and radiative lifetime. And the transition dipole moment is also calculated. But our results reveal that the AuB is not an ideal candidate for laser-cooling. In conclusion, this work is helpful in deepening the understanding of AuB, especially the structures of electronic states, interaction between excited states, and optical transition properties. All the data presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00009.
      Corresponding author: Zhu Yu-Hao, zhu_yuhao@foxmail.com
    • Funds: Project supported by the National Key Laboratory of Computational Physics, China (Grant No. 6142A05QN23003).
    [1]

    Yannopoulos J C 1991 The Extractive Metallurgy of Gold (Boston, MA: Springer

    [2]

    Saradesh K M, Vinodkumar G S 2020 J. Mater. Res. Tech. 9 2009Google Scholar

    [3]

    Matsuda F, Nakata K, Morikawa M 1984 Science 17 55

    [4]

    Eguchi S, Hoyt J L, Leitz C W, Fitzgerald E A 2002 Appl. Phys. Lett. 80 1743Google Scholar

    [5]

    Janke C, Jones R, Coutinho J, Öberg S, Briddon P R 2008 Mater. Sci. Semicond. Process. 11 324Google Scholar

    [6]

    Bisognin G, Vangelista S, Berti M, Impellizzeri G, Grimaldi M G 2010 J. Appl. Phys. 107 103512Google Scholar

    [7]

    Jones K S, Haller E E 1987 J. Appl. Phys. 61 2469Google Scholar

    [8]

    Uppal S, Willoughby A F W, Bonar J M, et al. 2001 J. Appl. Phys. 90 4293Google Scholar

    [9]

    Wang L 2004 J. Appl. Phys. 96 1939Google Scholar

    [10]

    Mirabella S, De Salvador D, Napolitani E, Bruno E, Priolo F 2013 J. Appl. Phys. 113 031101Google Scholar

    [11]

    Tzeli D, Mavridis A 2001 J. Phys. Chem. A 105 1175Google Scholar

    [12]

    Tzeli D, Mavridis A 2001 J. Phys. Chem. A 105 7672Google Scholar

    [13]

    Smith AM, Lorenz M, Agreiter J, Bondybey VE 1996 Mol. Phys. 88 247Google Scholar

    [14]

    Viswanathan R, Schmude R W, Gingerich K A 1996 J. Phys. Chem. 100 10784Google Scholar

    [15]

    Xing W, Shi D H, Sun J L, Zhu Z F 2017 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 173 939Google Scholar

    [16]

    Metz B, Stoll H, Dolg M 2000 J. Chem. Phys. 113 2563Google Scholar

    [17]

    Pontes M A P, de Oliveira M H, Fernandes G F S, et al. 2018 J. Quant. Spectrosc. Ra. 209 156Google Scholar

    [18]

    Uppal S, Willoughby A F W, Bonar J M, Cowern N E B, Grasby T 2004 J. Appl. Phys. 96 1376Google Scholar

    [19]

    Echeverría E, Dong B, Liu A, et al. 2017 Surf. Coat. Tech. 314 51Google Scholar

    [20]

    Demille D, Shuman E S, Barry J F 2010 Nature 467 820Google Scholar

    [21]

    Norrgard E, Mccarron D, Steinecker M, Demille D. 2014 Nature 512 286Google Scholar

    [22]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [23]

    Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E, Tarbutt M R 2017 Nat. Phys. 13 1173Google Scholar

    [24]

    Zhelyazkova V, Cournol A, Wall T E, et al. 2014 Phys. Rev. A 89 053416Google Scholar

    [25]

    Zhang Y G, Zhang H, Song H Y, Yu Y, Wan M J 2017 Phys. Chem. Chem. Phys. 19 24647Google Scholar

    [26]

    Yuan X, Guo H J, Wang Y M, Xue J L, Xu H F, Yan B 2019 J. Chem. Phys. 150 224305Google Scholar

    [27]

    Stuhl B K, Sawyer B C, Wang D J, Ye J 2008 Phys. Rev. Lett. 101 243002Google Scholar

    [28]

    Yang R, Gao Y F, Tang B, Gao T 2015 Phys. Chem. Chem. Phys. 17 1900Google Scholar

    [29]

    Fitch N J, Tarbutt M R 2021 Adv. Atom. Mol. Opt. Phys. 70 157

    [30]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schtz M 2012 Rev. Comput. Mol. Sci. 2 242Google Scholar

    [31]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schtz M 2012 http://www.molpro.net.

    [32]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053Google Scholar

    [33]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [34]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [35]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [36]

    Peterson K A, Dunning T H J 1993 J. Chem. Phys. 98 1358Google Scholar

    [37]

    Le Roy R 2007 Chemical Physics Research Report CP-663. (University of Waterloo

    [38]

    Halkier A, Helgaker T, Jorgensen P, Klopper W, Koch H, Olsen J, Wilson A K 1998 Chem. Phys. Lett. 286 243Google Scholar

  • 图 1  基于多参考组态相互作用方法计算的AuB分子12个Λ-S态的势能曲线随原子核间距的变化

    Figure 1.  Potential energy curves of 12 Λ-S states for AuB molecule at multi-reference configuration interaction level.

    图 2  AuB分子的6个单重态偶极矩随核间距的变化, 电子态分别为$ {{\mathrm{X}}}^{1}{{{\Sigma }}}^{+} $, $ {{\mathrm{A}}}^{1}{{\Pi}} $, $ {{\mathrm{C}}}^{1}{{{\Sigma }}}^{-} $, $ {{\mathrm{F}}}^{1}{{{\Sigma }}}^{-} $, $ {{\mathrm{E}}}^{1}{{\Pi}} $ 和 $ {{\mathrm{D}}}^{1}{{{\Sigma }}}^{+} $

    Figure 2.  Dipole moments of AuB for 6 singlet states versus the bond length, the states are $ {{\mathrm{X}}}^{1}{{{\Sigma }}}^{+} $, $ {{\mathrm{A}}}^{1}{{\Pi}} $, $ {{\mathrm{C}}}^{1}{{{\Sigma }}}^{-} $, $ {{\mathrm{F}}}^{1}{{{\Sigma }}}^{-} $, $ {{\mathrm{E}}}^{1}{{\Pi}} $ and $ {{\mathrm{D}}}^{1}{{{\Sigma }}}^{+} $.

    图 3  AuB分子的4个三重态偶极矩随核间距的变化, 电子态分别为$ {{\mathrm{a}}}^{3}{{{\Sigma }}}^{+} $, $ {{\mathrm{b}}}^{3}{{\Pi}} $, $ {{\mathrm{d}}}^{3}{{\Pi}} $ 和 $ {{\mathrm{e}}}^{3}{{\Pi}} $

    Figure 3.  Dipole moments of AuB for 4 triplet states versus the bond length. The states are $ {{\mathrm{a}}}^{3}{{{\Sigma }}}^{+} $, $ {{\mathrm{b}}}^{3}{{\Pi}} $, $ {{\mathrm{d}}}^{3}{{\Pi}} $ and $ {{\mathrm{e}}}^{3}{{\Pi}} $.

    图 4  AuB分子部分电子态之间的自旋轨道耦合矩阵元随核间距的变化, 这些矩阵元主要包含4个低激发态, 分别为$ {{\mathrm{X}}}^{1}{{{\Sigma }}}^{+} $, $ {{\mathrm{A}}}^{1}{{\Pi}} $, $ {{\mathrm{a}}}^{3}{{{\Sigma }}}^{+} $ 和 $ {{\mathrm{b}}}^{3}{{\Pi}} $

    Figure 4.  Absolute values of spin-orbit matrix elements of AuB as a function of bond length. The elements mainly include the four low-lying electronic states which are $ {{\mathrm{X}}}^{1}{{{\Sigma }}}^{+} $, $ {{\mathrm{A}}}^{1}{{\Pi}} $, $ {{\mathrm{a}}}^{3}{{{\Sigma }}}^{+} $ and $ {{\mathrm{b}}}^{3}{{\Pi}} $.

    图 5  AuB分子态跃迁$ {{\mathrm{A}}}^{1}{{{\Pi}}}_{1}-{{\mathrm{X}}}^{1}{{{\Sigma }}}_{{0}^{+}} $的跃迁偶极矩随核间距的变化

    Figure 5.  The transition dipole moment of AuB for the transition $ {{\mathrm{A}}}^{1}{{{\Pi}}}_{1}-{{\mathrm{X}}}^{1}{{{\Sigma }}}_{{0}^{+}} $ via internuclear distance.

    表 1  势能曲线在不同基组情况下, 核间距1.9 Å能量值与当前计算结果的误差, 其中, 基组分别为tz, qz及外推的cbs

    Table 1.  The error between the energy value with the nuclear distance of 1.9 Å under different basis sets and the current calculation result. The basis sets are tz, qz, and cbs.

    基组$ {{\mathrm{A}}}^{1}{{{\Pi}}}_{} $$ {{\mathrm{a}}}^{3}{{{{\Sigma }}}^{+}}_{} $$ {{\mathrm{b}}}^{3}{{{\Pi}}}_{} $$ {{\mathrm{C}}}^{1}{{{{\Sigma }}}^{-}}_{} $$ {{\mathrm{d}}}^{3}{{{\Pi}}}_{} $$ {{\mathrm{D}}}^{1}{{{\Sigma }}}^{+} $$ {{\mathrm{E}}}^{1}{{{\Pi}}}_{} $$ {{\mathrm{e}}}^{3}{{{\Pi}}}_{} $$ {{\mathrm{F}}}^{1}{{{{\Sigma }}}^{-}}_{} $
    Tz0.23%0.54%0.20%0.45%0.09%0.09%0.03%0.03%0.06%
    Qz0.44%0.40%0.52%0.12%0.51%0.44%0.11%0.51%0.85%
    Cbs0.60%0.30%0.75%0.12%0.75%0.69%0.17%0.87%1.43%
    DownLoad: CSV

    表 2  AuB分子的束缚电子态的光谱常数, 分别为态能量$ {T}_{{\mathrm{e}}} $, 平衡核间距$ {R}_{{\mathrm{e}}} $, 振动和转动频率$ {\omega }_{{\mathrm{e}}} $, $ {B}_{{\mathrm{e}}} $

    Table 2.  Spectroscopic constants of AuB. Specifically speaking, state energy $ {T}_{{\mathrm{e}}} $, equilibrium internuclear distance $ {R}_{{\mathrm{e}}} $, vibrational and rotational frequency $ {\omega }_{{\mathrm{e}}} $, $ {B}_{{\mathrm{e}}} $.

    State$ {T}_{{\mathrm{e}}} $/cm–1$ {R}_{{\mathrm{e}}} $/Å$ {\omega }_{{\mathrm{e}}} $/cm–1$ {\omega }_{{\mathrm{e}}}{x}_{{\mathrm{e}}} $/cm–1$ {B}_{{\mathrm{e}}} $/cm–1
    $ {{\mathrm{X}}}^{1}{{{\Sigma }}}^{+} $01.9199653.46894.30720.4383
    $ {{\mathrm{A}}}^{1}{{{\Pi}}}_{} $21645.31.9588563.268212.48860.4182
    $ {{\mathrm{a}}}^{3}{{{{\Sigma }}}^{+}}_{} $23332.11.9615619.110716.48400.4199
    $ {{\mathrm{b}}}^{3}{{{\Pi}}}_{} $13971.61.9200642.55635.58690.4384
    $ {{\mathrm{C}}}^{1}{{{{\Sigma }}}^{-}}_{} $34906.12.0642458.62186.52140.3835
    $ {{\mathrm{d}}}^{3}{{{\Pi}}}_{} $34844.92.0462500.34645.29600.3858
    $ {{\mathrm{D}}}^{1}{{{\Sigma }}}^{+} $40356.21.8714718.788639.30810.4619
    $ {{\mathrm{E}}}^{1}{{{\Pi}}}_{} $41526.92.0421203.68283.85830.2750
    $ {{\mathrm{e}}}^{3}{{{\Pi}}}_{} $41359.12.2946285.21928.36510.3082
    DownLoad: CSV

    表 3  AuB分子态跃迁$ {{\mathrm{A}}}^{1}{{{\Pi}}}_{1}-{{\mathrm{X}}}^{1}{{{\Sigma }}}_{{0}^{+}} $的爱因斯坦系数$ {A}_{{\nu }'{\nu }''} $(单位s–1)和Franck-Condon因子$ {F}_{{\nu }'{\nu }''} $, 注意本表格中考虑的最高振动态能级是$ \nu =4 $

    Table 3.  Einstein coefficients $ {A}_{{\nu }'{\nu }''} $ (in s–1) and Franck-Condon factors $ {F}_{{\nu }'{\nu }''} $ for the transition $ {{\mathrm{A}}}^{1}{{{\Pi}}}_{1}-{{\mathrm{X}}}^{1}{{{\Sigma }}}_{{0}^{+}} $. Noting that the highest vibrational level $ \nu =4 $.

    $ {\nu }'=0 $$ {\nu }'=1 $$ {\nu }'=2 $$ {\nu }'=3 $$ {\nu }'=4 $
    $ {\nu }''=0 $$ {A}_{{\nu }'{\nu }''} $23178544573.31814.680.00689730.7593
    $ {F}_{{\nu }'{\nu }''} $0.8127040.1768920.0102130.0001510.000025
    $ {\nu }''=1 $$ {A}_{{\nu }'{\nu }''} $50531.014271872172.012638.8708.147
    $ {F}_{{\nu }'{\nu }''} $0.1545910.5039950.2783660.0577030.005151
    $ {\nu }''=2 $$ {A}_{{\nu }'{\nu }''} $9276.9378255.059740.694354.832173.3
    $ {F}_{{\nu }'{\nu }''} $0.0290560.2382520.2131140.3515350.135485
    $ {\nu }''=3 $$ {A}_{{\nu }'{\nu }''} $1125.9521601.791794.94457.9079060.3
    $ {F}_{{\nu }'{\nu }''} $0.0034330.0662900.2797930.0192130.288028
    $ {\nu }''=4 $$ {A}_{{\nu }'{\nu }''} $63.75603977.6648473.763146.99349.84
    $ {F}_{{\nu }'{\nu }''} $0.0001680.0120650.1490990.1942960.024241
    DownLoad: CSV
    Baidu
  • [1]

    Yannopoulos J C 1991 The Extractive Metallurgy of Gold (Boston, MA: Springer

    [2]

    Saradesh K M, Vinodkumar G S 2020 J. Mater. Res. Tech. 9 2009Google Scholar

    [3]

    Matsuda F, Nakata K, Morikawa M 1984 Science 17 55

    [4]

    Eguchi S, Hoyt J L, Leitz C W, Fitzgerald E A 2002 Appl. Phys. Lett. 80 1743Google Scholar

    [5]

    Janke C, Jones R, Coutinho J, Öberg S, Briddon P R 2008 Mater. Sci. Semicond. Process. 11 324Google Scholar

    [6]

    Bisognin G, Vangelista S, Berti M, Impellizzeri G, Grimaldi M G 2010 J. Appl. Phys. 107 103512Google Scholar

    [7]

    Jones K S, Haller E E 1987 J. Appl. Phys. 61 2469Google Scholar

    [8]

    Uppal S, Willoughby A F W, Bonar J M, et al. 2001 J. Appl. Phys. 90 4293Google Scholar

    [9]

    Wang L 2004 J. Appl. Phys. 96 1939Google Scholar

    [10]

    Mirabella S, De Salvador D, Napolitani E, Bruno E, Priolo F 2013 J. Appl. Phys. 113 031101Google Scholar

    [11]

    Tzeli D, Mavridis A 2001 J. Phys. Chem. A 105 1175Google Scholar

    [12]

    Tzeli D, Mavridis A 2001 J. Phys. Chem. A 105 7672Google Scholar

    [13]

    Smith AM, Lorenz M, Agreiter J, Bondybey VE 1996 Mol. Phys. 88 247Google Scholar

    [14]

    Viswanathan R, Schmude R W, Gingerich K A 1996 J. Phys. Chem. 100 10784Google Scholar

    [15]

    Xing W, Shi D H, Sun J L, Zhu Z F 2017 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 173 939Google Scholar

    [16]

    Metz B, Stoll H, Dolg M 2000 J. Chem. Phys. 113 2563Google Scholar

    [17]

    Pontes M A P, de Oliveira M H, Fernandes G F S, et al. 2018 J. Quant. Spectrosc. Ra. 209 156Google Scholar

    [18]

    Uppal S, Willoughby A F W, Bonar J M, Cowern N E B, Grasby T 2004 J. Appl. Phys. 96 1376Google Scholar

    [19]

    Echeverría E, Dong B, Liu A, et al. 2017 Surf. Coat. Tech. 314 51Google Scholar

    [20]

    Demille D, Shuman E S, Barry J F 2010 Nature 467 820Google Scholar

    [21]

    Norrgard E, Mccarron D, Steinecker M, Demille D. 2014 Nature 512 286Google Scholar

    [22]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [23]

    Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E, Tarbutt M R 2017 Nat. Phys. 13 1173Google Scholar

    [24]

    Zhelyazkova V, Cournol A, Wall T E, et al. 2014 Phys. Rev. A 89 053416Google Scholar

    [25]

    Zhang Y G, Zhang H, Song H Y, Yu Y, Wan M J 2017 Phys. Chem. Chem. Phys. 19 24647Google Scholar

    [26]

    Yuan X, Guo H J, Wang Y M, Xue J L, Xu H F, Yan B 2019 J. Chem. Phys. 150 224305Google Scholar

    [27]

    Stuhl B K, Sawyer B C, Wang D J, Ye J 2008 Phys. Rev. Lett. 101 243002Google Scholar

    [28]

    Yang R, Gao Y F, Tang B, Gao T 2015 Phys. Chem. Chem. Phys. 17 1900Google Scholar

    [29]

    Fitch N J, Tarbutt M R 2021 Adv. Atom. Mol. Opt. Phys. 70 157

    [30]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schtz M 2012 Rev. Comput. Mol. Sci. 2 242Google Scholar

    [31]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schtz M 2012 http://www.molpro.net.

    [32]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053Google Scholar

    [33]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [34]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [35]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [36]

    Peterson K A, Dunning T H J 1993 J. Chem. Phys. 98 1358Google Scholar

    [37]

    Le Roy R 2007 Chemical Physics Research Report CP-663. (University of Waterloo

    [38]

    Halkier A, Helgaker T, Jorgensen P, Klopper W, Koch H, Olsen J, Wilson A K 1998 Chem. Phys. Lett. 286 243Google Scholar

  • [1] Feng Zhuo, Suo Bing-Bing, Han Hui-Xian, Li An-Yang. High-precision electron structure calculation of CaSH molecules and theoretical analysis of its application to laser-cooled target molecules. Acta Physica Sinica, 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [2] Guo Rui, Tan Han, Yuan Qin-Yue, Zhang Qing, Wan Ming-Jie. Spectroscopic and transition properties of LiCl anion. Acta Physica Sinica, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [3] Yin Jun-Hao, Yang Tao, Yin Jian-Ping. Theoretical investigation into spectrum of ${{{\bf{A}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Pi}} }_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow}} {{{\bf{X}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Sigma}} }_{{\boldsymbol{1/2}}}$ transition for CaH molecule toward laser cooling. Acta Physica Sinica, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [4] Spectroscopic and transition properties of LiCl- anion. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211688
    [5] Zhang Jin-Fang, Ren Ya-Na, Wang Jun-Min, Yang Bao-Dong. Investigation of the two-color polarization spectroscopy between the excited states based on cesium atoms. Acta Physica Sinica, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [6] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. Theoretical study of spectroscopic properties of 5 -S and 10 states and laser cooling for AlH+ cation. Acta Physica Sinica, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [7] Li Chen-Xi, Guo Ying-Chun, Wang Bing-Bing. Ab initio calculation of the potential curve of B3u- state of O2. Acta Physica Sinica, 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [8] Liu Xiao-Jun, Miao Feng-Juan, Li Rui, Zhang Cun-Hua, Li Qi-Nan, Yan Bing. Configuration interaction study on electronic structures and transitional properties of excited states of GeO molecule. Acta Physica Sinica, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [9] Li Gui-Xia, Jiang Yong-Chao, Ling Cui-Cui, Ma Hong-Zhang, Li Peng. The characteristics of excited states for HF+ ion under spin-orbit coupling. Acta Physica Sinica, 2014, 63(12): 127102. doi: 10.7498/aps.63.127102
    [10] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao. Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [11] Tian Yuan-Ye, Guo Fu-Ming, Zeng Si-Liang, Yang Yu-Jun. Investigation of photoionization of excited atom irradiated by the high-frequency intense laser. Acta Physica Sinica, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [12] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [13] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation. Acta Physica Sinica, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [14] Wang Jie-Min, Zhang Lei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. A Multi-reference configuration interaction investigation of the X2+and A2 low-lying electronic states of AsO+ isotope ion. Acta Physica Sinica, 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [15] Sun Yu, Feng Gao-Ping, Cheng Cun-Feng, Tu Le-Yi, Pan Hu, Yang Guo-Min, Hu Shui-Ming. Precision spectroscopy of helium using a laser-cooled atomic beam. Acta Physica Sinica, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [16] Liu Dong-Mei, Zhang Shu-Dong. MRCI calculations for BeCl electronic excited states. Acta Physica Sinica, 2012, 61(3): 033101. doi: 10.7498/aps.61.033101
    [17] Wang Jie-Min, Sun Jin-Feng. Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [18] Wang Quan-Wu, Chen Heng-Jie, Cheng Xin-Lu, Su Xin-Fang, Tang Hai-Yan. Multi-reference configuration interaction of the ground and low-lying excited states of LiC. Acta Physica Sinica, 2010, 59(7): 4556-4563. doi: 10.7498/aps.59.4556
    [19] Gao Feng, Yang Chuan_Lu, Zhang Xiao_Yan. MRCI potential curves and analytical potential energy functions of the low-lying excited states (1∏,3∏) of ZnHg. Acta Physica Sinica, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [20] Qian Qi, Yang Chuan-Lu, Gao Feng, Zhang Xiao-Yan. Multi-reference configuration interaction study on analytical potential energy function and spectroscopic constants of XOn(X=S,Cl; n=0,±1). Acta Physica Sinica, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
  • supplement 5-20231347数据集.ZIP supplement
Metrics
  • Abstract views:  2490
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  18 August 2023
  • Accepted Date:  14 November 2023
  • Available Online:  29 November 2023
  • Published Online:  05 March 2024

/

返回文章
返回
Baidu
map