-
The potential energy curves (PECs) associated with the lowest four dissociation limits, i.e., Zn(1Sg)+H(2Sg), Zn(3Pu)+H(2Sg), Zn+(2Sg)+H-(1Sg) and Zn(1Pu)+H(2Sg), are calculated by using a high-level configuration interaction method. The Davidson correction, scalar relativistic effect and spin-orbit coupling effect are taken into account in calculation. On the basis of our calculated PECs of -S and states, the spectroscopic constants including Te, e, ee, Be and Re are evaluated by numerical solution of one-dimensional Schrdinger equation. The computed spectroscopic constants are reasonably consistent with previous experimental results. The dipole moment curves of the 7 -S states are presented, and the influences of the variation of electronic configuration on the dipole moment and bonding property are discussed. The computational results reveal the ionic character of the C2+ state. The variation of -S component for state near the avoided crossing point is illuminated, which is used to explain the change of transition dipole moment (TDM) around the avoided crossing point. Based on the TDMs, Franck-Condon factors and the transition energies, the radiative lifetimes of v'=0-2 vibrational levels of (2)1/2, (3)1/2, (4)1/2 and (1)3/2 states are predicted, which accord well with the available experimental values.
-
Keywords:
- ZnH /
- multi-reference configuration interaction method /
- spectroscopic constant /
- radiative lifetime
[1] Li Y, Xi G 2005 J. Hazard. Mater. 127 244
[2] Peruzzini M, Poli R 2001 Recent Advances in Hydride Chemistry (Amsterdam: Elsevier) pp89-90
[3] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) pp678-679
[4] Hayashi S, Lonard C, Chambaud G 2009 J. Phys. Chem. A 113 14615
[5] Bucchino M P, Ziurys L M 2013 J. Phys. Chem. A 117 9732
[6] Watson W W 1930 Phys. Rev. 36 1134
[7] Fujioka Y, Tanaka Y 1937 Sci. Pap. Inst. Phys. Chem. Res. Jpn. 32 143
[8] Mrozowski S 1940 Phys. Rev. 58 597
[9] Khan M A 1962 Proc. Phys. Soc. 80 599
[10] Urban R, Magg U, Birk H, Jones H 1990 J. Chem. Phys. 92 14
[11] Shayesteh A, Le Roy R J, Varberg T D, Bernath P F 2006 J. Mol. Spectrosc. 237 87
[12] Ishiguro E, Kobori M 1967 J. Phys. Soc. Jpn. 22 263
[13] Veseth L 1971 J. Mol. Spectrosc. 38 228
[14] Chong D P, Langhoff S R, Bauschlicher C W, Walch S P, Partridge H 1986 J. Chem. Phys. 85 2850
[15] Chong D P, Langhoff S R 1986 J. Chem. Phys. 84 5606
[16] Jamorski C, Dargelos A, Teichteil C, Daudey J P 1994 J. Chem. Phys. 100 917
[17] Kerkines I S K, Mavridis A, Karipidis P A 2006 J. Phys. Chem. A 110 10899
[18] Wang L, Liu Y R, Cao Y, Huang C J, Chen X H 2010 J. At. Mol. Phys. 27 673 (in Chinese) [王玲, 刘议蓉, 曹勇, 黄昌军, 谌晓洪 2010 原子与分子 27 673]
[19] Yuan L, Fan Q C, Sun W G, Fan Z X, Feng H 2014 Acta Phys. Sin. 63 043102 (in Chinese) [袁丽, 樊群超, 孙卫国, 范志祥, 冯灏 2014 63 043102]
[20] Wang W B, Yu K, Zhang X M, Liu Y F 2014 Acta Phys. Sin. 63 073302 (in Chinese) [王文宝, 于坤, 张晓美, 刘玉芳 2014 63 073302]
[21] Liang G Y 2016 M. S. Dissertation (Changchun: Jilin University) (in Chinese) [梁桂颖2016 硕士学位论文(长春: 吉林大学)]
[22] Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (version 2010.1)
[23] Balabanov N B, Peterson K A 2005 J. Chem. Phys. 123 64107
[24] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
[25] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
[26] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[27] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
[28] Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823
[29] Winter N W, Pitzer R M 1988 J. Chem. Phys. 89 446
[30] Tilson J L, Ermler W C 2014 Theor. Chem. Acc. 133 1564
[31] Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schringer Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663
[32] Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards Publications)
[33] Kedzierski W, Supronowicz J, Atkinson J B, Krause L 1990 Can. J. Phys. 68 526
[34] Nedelec O, Dufayard J 1984 Chem. Phys. 84 167
[35] Dufayard J, Nedelec O 1977 J. Phys. France 38 449
-
[1] Li Y, Xi G 2005 J. Hazard. Mater. 127 244
[2] Peruzzini M, Poli R 2001 Recent Advances in Hydride Chemistry (Amsterdam: Elsevier) pp89-90
[3] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) pp678-679
[4] Hayashi S, Lonard C, Chambaud G 2009 J. Phys. Chem. A 113 14615
[5] Bucchino M P, Ziurys L M 2013 J. Phys. Chem. A 117 9732
[6] Watson W W 1930 Phys. Rev. 36 1134
[7] Fujioka Y, Tanaka Y 1937 Sci. Pap. Inst. Phys. Chem. Res. Jpn. 32 143
[8] Mrozowski S 1940 Phys. Rev. 58 597
[9] Khan M A 1962 Proc. Phys. Soc. 80 599
[10] Urban R, Magg U, Birk H, Jones H 1990 J. Chem. Phys. 92 14
[11] Shayesteh A, Le Roy R J, Varberg T D, Bernath P F 2006 J. Mol. Spectrosc. 237 87
[12] Ishiguro E, Kobori M 1967 J. Phys. Soc. Jpn. 22 263
[13] Veseth L 1971 J. Mol. Spectrosc. 38 228
[14] Chong D P, Langhoff S R, Bauschlicher C W, Walch S P, Partridge H 1986 J. Chem. Phys. 85 2850
[15] Chong D P, Langhoff S R 1986 J. Chem. Phys. 84 5606
[16] Jamorski C, Dargelos A, Teichteil C, Daudey J P 1994 J. Chem. Phys. 100 917
[17] Kerkines I S K, Mavridis A, Karipidis P A 2006 J. Phys. Chem. A 110 10899
[18] Wang L, Liu Y R, Cao Y, Huang C J, Chen X H 2010 J. At. Mol. Phys. 27 673 (in Chinese) [王玲, 刘议蓉, 曹勇, 黄昌军, 谌晓洪 2010 原子与分子 27 673]
[19] Yuan L, Fan Q C, Sun W G, Fan Z X, Feng H 2014 Acta Phys. Sin. 63 043102 (in Chinese) [袁丽, 樊群超, 孙卫国, 范志祥, 冯灏 2014 63 043102]
[20] Wang W B, Yu K, Zhang X M, Liu Y F 2014 Acta Phys. Sin. 63 073302 (in Chinese) [王文宝, 于坤, 张晓美, 刘玉芳 2014 63 073302]
[21] Liang G Y 2016 M. S. Dissertation (Changchun: Jilin University) (in Chinese) [梁桂颖2016 硕士学位论文(长春: 吉林大学)]
[22] Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (version 2010.1)
[23] Balabanov N B, Peterson K A 2005 J. Chem. Phys. 123 64107
[24] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
[25] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
[26] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[27] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
[28] Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823
[29] Winter N W, Pitzer R M 1988 J. Chem. Phys. 89 446
[30] Tilson J L, Ermler W C 2014 Theor. Chem. Acc. 133 1564
[31] Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schringer Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663
[32] Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards Publications)
[33] Kedzierski W, Supronowicz J, Atkinson J B, Krause L 1990 Can. J. Phys. 68 526
[34] Nedelec O, Dufayard J 1984 Chem. Phys. 84 167
[35] Dufayard J, Nedelec O 1977 J. Phys. France 38 449
Catalog
Metrics
- Abstract views: 7245
- PDF Downloads: 320
- Cited By: 0