搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnH分子激发态的电子结构和跃迁性质的理论计算

赵书涛 梁桂颖 李瑞 李奇楠 张志国 闫冰

引用本文:
Citation:

ZnH分子激发态的电子结构和跃迁性质的理论计算

赵书涛, 梁桂颖, 李瑞, 李奇楠, 张志国, 闫冰

Theoretical study on the electronic structure and transition properties of excited state of ZnH molecule

Zhao Shu-Tao, Liang Gui-Ying, Li Rui, Li Qi-Nan, Zhang Zhi-Guo, Yan Bing
PDF
导出引用
  • 采用高精度的多参考组态相互作用方法计算了ZnH分子的能量最低四个离解限m Zn(1Sg)+H(2Sg),Zn(3Pu)+H(2Sg),Zn+(2Sg)+H-(1Sg)和Zn(1Pu)+H(2Sg)对应的7个-S态的势能曲线.计算中考虑了Davidson修正、标量相对论效应、自旋-轨道耦合效应和芯-价电子关联.基于计算的-S和态的势能曲线,数值求解一维径向Schrdinger方程得到了束缚电子态的光谱常数,理论计算结果与之前的实验结果符合较好.计算得到了7个-S态的电偶极矩随核间距的变化曲线,分析了电子组态成分变化对电偶极矩和成键性质的影响.计算结果表明,C2+态是一个离子对态.进一步地,分析了避免交叉点附近态的-S态组成的变化规律,讨论了避免交叉现象对跃迁偶极矩的影响.基于计算的跃迁偶极矩、Franck-Condon因子和振动能级信息,给出了束缚激发态(2)1/2,(3)1/2,(4)1/2和(1)3/2的v'=02振动能级的自发发射寿命,结果与现有实验值相符合.
    The potential energy curves (PECs) associated with the lowest four dissociation limits, i.e., Zn(1Sg)+H(2Sg), Zn(3Pu)+H(2Sg), Zn+(2Sg)+H-(1Sg) and Zn(1Pu)+H(2Sg), are calculated by using a high-level configuration interaction method. The Davidson correction, scalar relativistic effect and spin-orbit coupling effect are taken into account in calculation. On the basis of our calculated PECs of -S and states, the spectroscopic constants including Te, e, ee, Be and Re are evaluated by numerical solution of one-dimensional Schrdinger equation. The computed spectroscopic constants are reasonably consistent with previous experimental results. The dipole moment curves of the 7 -S states are presented, and the influences of the variation of electronic configuration on the dipole moment and bonding property are discussed. The computational results reveal the ionic character of the C2+ state. The variation of -S component for state near the avoided crossing point is illuminated, which is used to explain the change of transition dipole moment (TDM) around the avoided crossing point. Based on the TDMs, Franck-Condon factors and the transition energies, the radiative lifetimes of v'=0-2 vibrational levels of (2)1/2, (3)1/2, (4)1/2 and (1)3/2 states are predicted, which accord well with the available experimental values.
      通信作者: 赵书涛, zhaoshutao2002@163.com;yanbing@jlu.edu.cn ; 闫冰, zhaoshutao2002@163.com;yanbing@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11604052,11404180,11574114)、安徽省自然基金(批准号:1608085QA19)、黑龙江省自然基金(批准号:A2015010)、黑龙江省普通本科高等学校青年创新人才培养计划(批准号:2015095)和吉林省自然基金(批准号:20150101003JC)资助的课题.
      Corresponding author: Zhao Shu-Tao, zhaoshutao2002@163.com;yanbing@jlu.edu.cn ; Yan Bing, zhaoshutao2002@163.com;yanbing@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604052, 11404180, 11574114), the Natural Science Foundation of Anhui Province, China (Grant No. 1608085QA19), the Natural Science Foundation of Heilongjiang Province, China (Grant No. A2015010), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province, China (Grant No. 2015095), and the Natural Science Foundation of Jilin Province, China (Grant No. 20150101003JC).
    [1]

    Li Y, Xi G 2005 J. Hazard. Mater. 127 244

    [2]

    Peruzzini M, Poli R 2001 Recent Advances in Hydride Chemistry (Amsterdam: Elsevier) pp89-90

    [3]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) pp678-679

    [4]

    Hayashi S, Lonard C, Chambaud G 2009 J. Phys. Chem. A 113 14615

    [5]

    Bucchino M P, Ziurys L M 2013 J. Phys. Chem. A 117 9732

    [6]

    Watson W W 1930 Phys. Rev. 36 1134

    [7]

    Fujioka Y, Tanaka Y 1937 Sci. Pap. Inst. Phys. Chem. Res. Jpn. 32 143

    [8]

    Mrozowski S 1940 Phys. Rev. 58 597

    [9]

    Khan M A 1962 Proc. Phys. Soc. 80 599

    [10]

    Urban R, Magg U, Birk H, Jones H 1990 J. Chem. Phys. 92 14

    [11]

    Shayesteh A, Le Roy R J, Varberg T D, Bernath P F 2006 J. Mol. Spectrosc. 237 87

    [12]

    Ishiguro E, Kobori M 1967 J. Phys. Soc. Jpn. 22 263

    [13]

    Veseth L 1971 J. Mol. Spectrosc. 38 228

    [14]

    Chong D P, Langhoff S R, Bauschlicher C W, Walch S P, Partridge H 1986 J. Chem. Phys. 85 2850

    [15]

    Chong D P, Langhoff S R 1986 J. Chem. Phys. 84 5606

    [16]

    Jamorski C, Dargelos A, Teichteil C, Daudey J P 1994 J. Chem. Phys. 100 917

    [17]

    Kerkines I S K, Mavridis A, Karipidis P A 2006 J. Phys. Chem. A 110 10899

    [18]

    Wang L, Liu Y R, Cao Y, Huang C J, Chen X H 2010 J. At. Mol. Phys. 27 673 (in Chinese) [王玲, 刘议蓉, 曹勇, 黄昌军, 谌晓洪 2010 原子与分子 27 673]

    [19]

    Yuan L, Fan Q C, Sun W G, Fan Z X, Feng H 2014 Acta Phys. Sin. 63 043102 (in Chinese) [袁丽, 樊群超, 孙卫国, 范志祥, 冯灏 2014 63 043102]

    [20]

    Wang W B, Yu K, Zhang X M, Liu Y F 2014 Acta Phys. Sin. 63 073302 (in Chinese) [王文宝, 于坤, 张晓美, 刘玉芳 2014 63 073302]

    [21]

    Liang G Y 2016 M. S. Dissertation (Changchun: Jilin University) (in Chinese) [梁桂颖2016 硕士学位论文(长春: 吉林大学)]

    [22]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (version 2010.1)

    [23]

    Balabanov N B, Peterson K A 2005 J. Chem. Phys. 123 64107

    [24]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [25]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [26]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [27]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [28]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [29]

    Winter N W, Pitzer R M 1988 J. Chem. Phys. 89 446

    [30]

    Tilson J L, Ermler W C 2014 Theor. Chem. Acc. 133 1564

    [31]

    Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schringer Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [32]

    Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards Publications)

    [33]

    Kedzierski W, Supronowicz J, Atkinson J B, Krause L 1990 Can. J. Phys. 68 526

    [34]

    Nedelec O, Dufayard J 1984 Chem. Phys. 84 167

    [35]

    Dufayard J, Nedelec O 1977 J. Phys. France 38 449

  • [1]

    Li Y, Xi G 2005 J. Hazard. Mater. 127 244

    [2]

    Peruzzini M, Poli R 2001 Recent Advances in Hydride Chemistry (Amsterdam: Elsevier) pp89-90

    [3]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) pp678-679

    [4]

    Hayashi S, Lonard C, Chambaud G 2009 J. Phys. Chem. A 113 14615

    [5]

    Bucchino M P, Ziurys L M 2013 J. Phys. Chem. A 117 9732

    [6]

    Watson W W 1930 Phys. Rev. 36 1134

    [7]

    Fujioka Y, Tanaka Y 1937 Sci. Pap. Inst. Phys. Chem. Res. Jpn. 32 143

    [8]

    Mrozowski S 1940 Phys. Rev. 58 597

    [9]

    Khan M A 1962 Proc. Phys. Soc. 80 599

    [10]

    Urban R, Magg U, Birk H, Jones H 1990 J. Chem. Phys. 92 14

    [11]

    Shayesteh A, Le Roy R J, Varberg T D, Bernath P F 2006 J. Mol. Spectrosc. 237 87

    [12]

    Ishiguro E, Kobori M 1967 J. Phys. Soc. Jpn. 22 263

    [13]

    Veseth L 1971 J. Mol. Spectrosc. 38 228

    [14]

    Chong D P, Langhoff S R, Bauschlicher C W, Walch S P, Partridge H 1986 J. Chem. Phys. 85 2850

    [15]

    Chong D P, Langhoff S R 1986 J. Chem. Phys. 84 5606

    [16]

    Jamorski C, Dargelos A, Teichteil C, Daudey J P 1994 J. Chem. Phys. 100 917

    [17]

    Kerkines I S K, Mavridis A, Karipidis P A 2006 J. Phys. Chem. A 110 10899

    [18]

    Wang L, Liu Y R, Cao Y, Huang C J, Chen X H 2010 J. At. Mol. Phys. 27 673 (in Chinese) [王玲, 刘议蓉, 曹勇, 黄昌军, 谌晓洪 2010 原子与分子 27 673]

    [19]

    Yuan L, Fan Q C, Sun W G, Fan Z X, Feng H 2014 Acta Phys. Sin. 63 043102 (in Chinese) [袁丽, 樊群超, 孙卫国, 范志祥, 冯灏 2014 63 043102]

    [20]

    Wang W B, Yu K, Zhang X M, Liu Y F 2014 Acta Phys. Sin. 63 073302 (in Chinese) [王文宝, 于坤, 张晓美, 刘玉芳 2014 63 073302]

    [21]

    Liang G Y 2016 M. S. Dissertation (Changchun: Jilin University) (in Chinese) [梁桂颖2016 硕士学位论文(长春: 吉林大学)]

    [22]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (version 2010.1)

    [23]

    Balabanov N B, Peterson K A 2005 J. Chem. Phys. 123 64107

    [24]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [25]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [26]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [27]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [28]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [29]

    Winter N W, Pitzer R M 1988 J. Chem. Phys. 89 446

    [30]

    Tilson J L, Ermler W C 2014 Theor. Chem. Acc. 133 1564

    [31]

    Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schringer Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [32]

    Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards Publications)

    [33]

    Kedzierski W, Supronowicz J, Atkinson J B, Krause L 1990 Can. J. Phys. 68 526

    [34]

    Nedelec O, Dufayard J 1984 Chem. Phys. 84 167

    [35]

    Dufayard J, Nedelec O 1977 J. Phys. France 38 449

  • [1] 朱宇豪, 李瑞. 基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究.  , 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [2] 滑亚文, 刘以良, 万明杰. SeH+离子低激发态的电子结构和跃迁性质的理论研究.  , 2020, 69(15): 153101. doi: 10.7498/aps.69.20200278
    [3] 魏长立, 梁桂颖, 刘晓婷, 颜培源, 闫冰. SO分子最低两个电子态振-转谱的显关联多参考组态相互作用计算.  , 2016, 65(16): 163101. doi: 10.7498/aps.65.163101
    [4] 刘华兵, 袁丽, 李秋梅, 谌晓洪, 杜泉, 金蓉, 陈雪连, 王玲. 6Li32S双原子分子的光谱和辐射跃迁理论研究.  , 2016, 65(3): 033101. doi: 10.7498/aps.65.033101
    [5] 刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰. GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究.  , 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [6] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. BCl分子X1Σ+, a3Π和A1Π态的光谱性质.  , 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [7] 于坤, 张晓美, 刘玉芳. 从头计算研究BCl+基态和激发态的势能曲线和光谱性质.  , 2013, 62(6): 063301. doi: 10.7498/aps.62.063301
    [8] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳. 多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质.  , 2013, 62(23): 233302. doi: 10.7498/aps.62.233302
    [9] 王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋. AsO+同位素离子X2+和A2电子态的多参考组态相互作用方法研究.  , 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [10] 刘冬梅, 张树东. BeCl分子电子激发态的多参考组态相互作用计算.  , 2012, 61(3): 033101. doi: 10.7498/aps.61.033101
    [11] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数.  , 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [12] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数.  , 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [13] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数.  , 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [14] 陈恒杰, 程新路, 唐海燕, 王全武, 苏欣纺. LiC分子基态及其低电子激发态的多参考组态相互作用方法研究.  , 2010, 59(7): 4556-4563. doi: 10.7498/aps.59.4556
    [15] 张丽艳, 田颖, 张军杰, 胡丽丽. LiF及AlF3对掺Tm3+氟磷玻璃光学、光谱性质、析晶性能及结构的影响.  , 2010, 59(11): 8205-8211. doi: 10.7498/aps.59.8205
    [16] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数.  , 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [17] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质.  , 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [18] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数.  , 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [19] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数.  , 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
    [20] 贺黎明, 杨 樾, 陆 慧. 原子实极化效应和钠原子s系列高Rydberg态能级寿命的计算.  , 2003, 52(6): 1385-1389. doi: 10.7498/aps.52.1385
计量
  • 文章访问数:  7242
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-07
  • 修回日期:  2017-01-23
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map