-
In the present paper, we study the average fluorescence lifetimes, detected by using the time-correlated single-photon-counting (TCSPC) technique, of three thioglycolic acid-capped CdTe quantum dots (TGA-CdTe QDs), which are ~6 ns, ~9 ns and ~11 ns; and the fluorescence kinetic process includes two parts:the slow process and the fast process. With the increase of the particle size, the slow process becomes longer, but the fast process becomes shorter. Afterwards, by using both femtosecond transient absorption and fluorescence up-conversion time-resolved spectrum techniques, we have investigated the interband relaxation process of three TGA-CdTe QD samples, with the nanoparticle diameters of 2.3, 2.8 and 3.5 nm. Investigation indicates that for the three QD samples, exciton filling rate becomes slower in the highest excited state and the lowest excited state, among them, the time of exciton filling increases from 0.33 to 0.79 ps for the highest excited state, while the time of exciton filling increases from 0.53 ps to 1 ps for the lowest excited state. Moreover, the two kinds of experiment provide complementary information and obtain the full image of interband relaxation process. Result shows that the bleach recovery of the 1 S transition shows an initial rise, but the fluorescence up-conversion signal for the 1 S transition is slower in rise time, which can provide help in the application of optoelectronic devices.
-
Keywords:
- TGA-CdTe quantum dots /
- time-resolved spectroscopy /
- exciton dynamics
[1] Tomczak N, Jańczewski D, Han M 2009 Prog. Polym. Sci. 34 393
[2] Wu W Z, Zheng Z R, Liu W L, Yang Y Q, Su W H, Zhang J P, Yan Y X, Jin Q H, 2007 Chin. Phys. Soc. 56 2926
[3] Axt V M, Kuhn T 2004 Rep. Prog. Phys. 67 433
[4] Klimov V I, Mikhailovsky A A, Xu S, Hollingsworth J A, Leatherdale C A, Eisler H J, Bawendi M G 2000 Science 290 314
[5] Aiping Liu, Shuo Peng, Jian Chow Soo, Min Kuang, Peng Chen, Hongwei Duan 2011 Anal. Chem. 83 1124
[6] Lianzhe Hu, Xiaoqing Liu, Alessandro Cecconello, Itamar Willner 2014 Nano Lett. 14 6030
[7] Kajii Y, Nakagawa T, Suzuki S 1991 Chem. Phys. Lett. 181 100
[8] Peon J, Zewail A H 2001 Chem. Phys. Lett. 348 255
[9] Pohl D W, Denk W, Lanz M 1984 Appl. Phys. Lett. 44 651
[10] Masayuki Yoshizawa, Makoto Kurosawa 1999 Phys. Rev. A 61 01380801
[11] Klimov V I, McBranch D W 1998 Phys. Rev. Lett. 80 4028
[12] Gao B R, Wang H Y, Wang H, Yang Z Y, Wang L, Jiang Y, Hao Y W, Chen Q D, Sun H B 2012 IEEE Journal of Quantum Electronics 48 425
[13] Xu S, Mikhailovsky A A, Hollingsworth J A, Klimov V I 2002 Phys. Rev. B 65 045319
[14] Wang H Y, Celso de Mello Donega, Andries Meijerink, Max Glasbeek 2006 J. Phys. Chem. B 110 733
[15] Kaniyankandy S, Rawalekar S, Verma S, Palit D K, Ghosh H N 2010 Phys. Chem. Chem. Phys. 12 4210
[16] Peng P, Milliron D J, Hughes S M, Johnson J C, Alivisatos A P, Saykally R J 2005 Nano Lett. 5 1809
[17] Dooley C J, Dimitrov S D, Fiebig T 2008 J. Phys. Chem. C 112 12074
[18] Pan L Y, Pan G C, Zhang Y L, Gao B R, Dai Z W 2012 J. Nanosci. Nanotechnol. 2 1
[19] Pan L Y, Zhang Y L, Wang H Y, Liu H, Luo J S, Xia H, Zhao L, Chen Q D, Xu S P, Gao B R, Fu L M, Sun H B 2011 Nanoscale 3 2882
[20] Zhang H, Wang L, Xiong H 2003 Adv. Mater. 15 1712
[21] Yu W W, Peng X G 2002 Angew. Chem. Int. Ed. 41 2368
[22] Kubo R, Kawabata A, Kobayashi S 1984 Annu. Rev. Mater. Sci. 14 49
[23] Pan L Y, Pan G C, Che X L, Wang L, Tamai N, Dai Z W 2011 Appl. Opt. 31 G31
-
[1] Tomczak N, Jańczewski D, Han M 2009 Prog. Polym. Sci. 34 393
[2] Wu W Z, Zheng Z R, Liu W L, Yang Y Q, Su W H, Zhang J P, Yan Y X, Jin Q H, 2007 Chin. Phys. Soc. 56 2926
[3] Axt V M, Kuhn T 2004 Rep. Prog. Phys. 67 433
[4] Klimov V I, Mikhailovsky A A, Xu S, Hollingsworth J A, Leatherdale C A, Eisler H J, Bawendi M G 2000 Science 290 314
[5] Aiping Liu, Shuo Peng, Jian Chow Soo, Min Kuang, Peng Chen, Hongwei Duan 2011 Anal. Chem. 83 1124
[6] Lianzhe Hu, Xiaoqing Liu, Alessandro Cecconello, Itamar Willner 2014 Nano Lett. 14 6030
[7] Kajii Y, Nakagawa T, Suzuki S 1991 Chem. Phys. Lett. 181 100
[8] Peon J, Zewail A H 2001 Chem. Phys. Lett. 348 255
[9] Pohl D W, Denk W, Lanz M 1984 Appl. Phys. Lett. 44 651
[10] Masayuki Yoshizawa, Makoto Kurosawa 1999 Phys. Rev. A 61 01380801
[11] Klimov V I, McBranch D W 1998 Phys. Rev. Lett. 80 4028
[12] Gao B R, Wang H Y, Wang H, Yang Z Y, Wang L, Jiang Y, Hao Y W, Chen Q D, Sun H B 2012 IEEE Journal of Quantum Electronics 48 425
[13] Xu S, Mikhailovsky A A, Hollingsworth J A, Klimov V I 2002 Phys. Rev. B 65 045319
[14] Wang H Y, Celso de Mello Donega, Andries Meijerink, Max Glasbeek 2006 J. Phys. Chem. B 110 733
[15] Kaniyankandy S, Rawalekar S, Verma S, Palit D K, Ghosh H N 2010 Phys. Chem. Chem. Phys. 12 4210
[16] Peng P, Milliron D J, Hughes S M, Johnson J C, Alivisatos A P, Saykally R J 2005 Nano Lett. 5 1809
[17] Dooley C J, Dimitrov S D, Fiebig T 2008 J. Phys. Chem. C 112 12074
[18] Pan L Y, Pan G C, Zhang Y L, Gao B R, Dai Z W 2012 J. Nanosci. Nanotechnol. 2 1
[19] Pan L Y, Zhang Y L, Wang H Y, Liu H, Luo J S, Xia H, Zhao L, Chen Q D, Xu S P, Gao B R, Fu L M, Sun H B 2011 Nanoscale 3 2882
[20] Zhang H, Wang L, Xiong H 2003 Adv. Mater. 15 1712
[21] Yu W W, Peng X G 2002 Angew. Chem. Int. Ed. 41 2368
[22] Kubo R, Kawabata A, Kobayashi S 1984 Annu. Rev. Mater. Sci. 14 49
[23] Pan L Y, Pan G C, Che X L, Wang L, Tamai N, Dai Z W 2011 Appl. Opt. 31 G31
Catalog
Metrics
- Abstract views: 6301
- PDF Downloads: 174
- Cited By: 0