-
In condensed phase, the dissociation mechanism of molecule is different from that of isolated molecule due to the effect of interaction between molecules. How to effectively trace the reaction process and products in condensed phase is a technical problem which needs to be solved urgently. In this paper, femtosecond transient grating spectroscopy is used to investigate dissociation dynamics in condensed phase. Transient grating spectroscopy, as a coherent spectral technique, has some advantages such as high signal-noise ratio and free background, thus it can identify trace numbers of reaction products in dissociation. The investigation about model molecules such as iodomethane and nitromethane demonstrates that the transient grating technique can observe relaxation in electronic excited state and also has ability to track reactants, products, and vibration of molecule or perssad. The dissociation dynamics in condensed phase material is significant for understanding the reaction mechanism in the fields of biochemistry and detonation. Thus the femtosecond transient grating has a wide application prospect in these fields. In addition, the transient grating technique, as a non-contact diagnostic approach, can be easily adapted to high temperature and high pressure conditions, etc. Thus, the transient grating technique also has a potential value in the fields of phase transform dynamics and high pressure synthesis, etc.
[1] Dantus M, Rosker M J, Zewail A H 1987 J. Chem. Phys. 87 2395
[2] Zewail A H 1980 Phys. Today 11 27
[3] Materny A, Chen T, Schmitt M, Siebert T, Vierheilig A, Engel V, Kiefer W 2000 Appl. Phys. B 71 299
[4] Torralva B R, Allen R E 2002 J. Mod. Opt. 49 593
[5] Gruebele M, Wolynes P G 2004 Acc. Chem. Res. 37 261
[6] Xu S C, Lin M C 2005 J. Phys. Chem. B 109 8367
[7] Hause M L, Herath N, Zhu R S, Lin M C, Suits A G 2011 Nat. Chem. 3 932
[8] Schweihgofer F, Dworak L, Braun M, Zastrow M, Wahl J, Burghardt I, Braun K R, Wachtveitl J 2015 Sci. Rep. 5 9368
[9] Elles C G, Grim F F 2006 Annu. Rev. Phys. Chem. 57 273
[10] Crim F F 2011 Nat. Chem. 3 344
[11] Greaves S J, Rose R A, Oliver T A A, Glowacki D R, Ashfold M N R, Harvey J N, Clark I P, Greetham G M, Parker A W, Towrie M, Orr-Eving A J 2011 Science 331 1423
[12] Jiang L L, Liu W L, Song Y F, He X, Wang Y, Wang C, Wu H L, Yang F, Yang Y Q 2014 Chem. Phys. 429 12
[13] Wang Y, Song Y F, Liu W L, Liu Y Q, Duo L P, Jiang L L, Yang Y Q 2015 Chem. Phys. Lett. 633 126
[14] Wang Y, Liu W L, Song Y F, Liu Y Q, Duo L P, Jiang L L, Yu G Y, Yang Y Q 2015 J. Chem. Phys. 143 051101
[15] Wu H L, Song Y F, Yu G Y, Wang Y, Wang C, Yang Y Q 2016 Chem. Phys. Lett. 652 152
[16] Zeng Y Y, Song Y F, Yu G Y, Zheng X X, Guo W C, Zhao J, Yang Y Q 2016 J. Mol. Struct. 1119 240
[17] Guo Y Q, Bhattacharya A, Bernstein E R 2009 J. Phys. Chem. A 113 85
[18] Lin M F, Lee Y T, Ni C K, Xu S C, Lin M C 2007 J. Chem. Phys. 126 064310
[19] Robel I, Subramanian V, Kuno M, Kamat P V 2006 J. Am. Chem. Soc. 128 2385
[20] McCamant D W, Kukura P, Yoon S, Mathies R A 2004 Rev. Sci. Instrum. 75 4971
-
[1] Dantus M, Rosker M J, Zewail A H 1987 J. Chem. Phys. 87 2395
[2] Zewail A H 1980 Phys. Today 11 27
[3] Materny A, Chen T, Schmitt M, Siebert T, Vierheilig A, Engel V, Kiefer W 2000 Appl. Phys. B 71 299
[4] Torralva B R, Allen R E 2002 J. Mod. Opt. 49 593
[5] Gruebele M, Wolynes P G 2004 Acc. Chem. Res. 37 261
[6] Xu S C, Lin M C 2005 J. Phys. Chem. B 109 8367
[7] Hause M L, Herath N, Zhu R S, Lin M C, Suits A G 2011 Nat. Chem. 3 932
[8] Schweihgofer F, Dworak L, Braun M, Zastrow M, Wahl J, Burghardt I, Braun K R, Wachtveitl J 2015 Sci. Rep. 5 9368
[9] Elles C G, Grim F F 2006 Annu. Rev. Phys. Chem. 57 273
[10] Crim F F 2011 Nat. Chem. 3 344
[11] Greaves S J, Rose R A, Oliver T A A, Glowacki D R, Ashfold M N R, Harvey J N, Clark I P, Greetham G M, Parker A W, Towrie M, Orr-Eving A J 2011 Science 331 1423
[12] Jiang L L, Liu W L, Song Y F, He X, Wang Y, Wang C, Wu H L, Yang F, Yang Y Q 2014 Chem. Phys. 429 12
[13] Wang Y, Song Y F, Liu W L, Liu Y Q, Duo L P, Jiang L L, Yang Y Q 2015 Chem. Phys. Lett. 633 126
[14] Wang Y, Liu W L, Song Y F, Liu Y Q, Duo L P, Jiang L L, Yu G Y, Yang Y Q 2015 J. Chem. Phys. 143 051101
[15] Wu H L, Song Y F, Yu G Y, Wang Y, Wang C, Yang Y Q 2016 Chem. Phys. Lett. 652 152
[16] Zeng Y Y, Song Y F, Yu G Y, Zheng X X, Guo W C, Zhao J, Yang Y Q 2016 J. Mol. Struct. 1119 240
[17] Guo Y Q, Bhattacharya A, Bernstein E R 2009 J. Phys. Chem. A 113 85
[18] Lin M F, Lee Y T, Ni C K, Xu S C, Lin M C 2007 J. Chem. Phys. 126 064310
[19] Robel I, Subramanian V, Kuno M, Kamat P V 2006 J. Am. Chem. Soc. 128 2385
[20] McCamant D W, Kukura P, Yoon S, Mathies R A 2004 Rev. Sci. Instrum. 75 4971
Catalog
Metrics
- Abstract views: 6748
- PDF Downloads: 400
- Cited By: 0